
Technical Report 2017-001

Adapting subset construction to automata

over list structures

Satoshi Okui1, Taro Suzuki2, Yoshiki Iwata1

January 10, 2018

1Depertment of Computer Science
Chubu University
Matsumoto 1200, Kasugai City
Aichi, 487-8501 Japan

2Department of Computer Science
and Engineering
The University of Aizu
Tsuruga, Ikki-Machi,
Aizu-Wakamatsu City
Fukushima, 965-8580 Japan

Technical Report 2017-001

Title:

Authors:

Key Words and Phrases:

Abstract:

Report Date: Written Language:

Any Other Identifying Information of this Report:

Distribution Statement:

Supplementary Notes:

The University of Aizu
Aizu-Wakamatsu

Fukushima 965-8580

Japan

1/10/2018 English

First Issue: 5 copies

Satoshi Okui, Taro Suzuki and Yoshiki Iwata

Adapting subset construction to automata over list structures

string matching, finite automata, subset construction, Aho-Corasick automata, KMP algorithm,
Mohri’s string matching algorithm

We investigate the subset construction (or powerset construction) introduced by Rabin and
Scott seriously. Consider an NFA obtained from a DFA by allowing additional moves from the
initial state to itself for any input symbols in the alphabet. Given such NFA’s, we construct
DFA’s whose states are lists of the NFA-states such that no element occurs more than once in
each list, then adapting the subset construction so as to deal with lists rather than sets. We
show that such a variant of subset construction, with suitable optimizations applied, performs
better than the original one in the sense that each construction step yielding a DFA-state is,
in practice, irrelevant to the number of the NFA-states. We also adapt our construction so as
to produce DFA’s with default (or failure) transition, resulting in a new algorithm such as the
classical construction of KMP-automata.

Cognitive Science Laboratory

Adapting Subset Construction to Automata

over List Structures

Satoshi Okui, Taro Suzuki and Yoshiki Iwata

Abstract

We investigate the subset construction (or powerset construction) introduced by Rabin and Scott
seriously. Consider an NFA obtained from a DFA by allowing additional moves from the initial state
to itself for any input symbols in the alphabet. Given such NFA’s, we construct DFA’s whose states
are lists of the NFA-states such that no element occurs more than once in each list, then adapting the
subset construction so as to deal with lists rather than sets. We show that such a variant of subset
construction, with suitable optimizations applied, performs better than the original one in the sense that
each construction step yielding a DFA-state is, in practice, irrelevant to the number of the NFA-states.
We also adapt our construction so as to produce DFA’s with default (or failure) transition, resulting in
a new algorithm such as an extention of the classical construction of KMP-automata.

1 Introduction

The subset construction (or powerset construction) introduced by M. Rabin and D. Scott [7] is one of the
most fundamental techniques in automata theory, having gained practical impact especially in compiler
construction and regular expression pattern matching. For example, lexical analyzer is based on the subset
construction applied for Thompson’s ϵ-NFA [9]. LR-Parser [4] also benifits from it; the construction of LR
automata is nothing but the subset construction for some kind of ϵ-NFA where ϵ-transition represents the
reduction via production rules in context-free grammar. Recent developments of efficient greedy or leftmost-
longest regular expression matching algorithms basically perform the subset construction in call-by-need
manner, producing a DFA-state as long as it is really needed. There are also theoretical influences. For
example, Brozozowski’s DFA-minimalization [2] applies the subset construction twice. Safra’s construction
[8] is a generalization of the subset construction for non-deterministic Büchi automata.

The subset construction is also relevant to string matching, a very extensive area of computer science
with numerous contributions. The shift-OR (or , shift-AND in dual notion) algorithm [1] can be seen as
an efficient implementation of the subset construction by bit vectors provided that NFA’s are given in very
restricted form: conjunction of character classes. It is known that the subset construction is also relevant
to Knuth-Morris-Platt string matching algorithm [5]; indeed, it produces, given an NFA came from a string
pattern, a DFA isomorphic to the KMP-automaton for the given string (see [3] for example). However, to
the authors’ best knowledge, no researches taking that relationship seriously into account are found in the
literature.

This paper takes the relevance seriously, offering a new variant of subset construction which is closely
related to the construction of KMP-automata or Aho-Corasick automata. The key idea is to adapt the
subset construction for lists of NFA-states rather than sets; then, the “cdr” operation dropping the first
item of a list gives the failure transition. Constructing DFA’s over list structures, rather than over sets, also
delivers benefits in terms of computational cost. We will show that the cdr-part of a list is always found
in the previous subset construction steps provided that the input NFA is made from a DFA by allowing
extra transition steps from the initial state to itself. This fact allows much improvements in efficiently of the
algorithm.

1

2 Preliminaries

For a set A, we write the direct sum A+ {⊥} as A⊥ where ⊥ represents the undefined value. For the sake
of simplicity, we assume ⊥ ̸∈ A, regarding A⊥ just as A ∪ {⊥}. A function f : A → B is extended to
f⊥ : A⊥ → B⊥ as

f⊥(a) =

{
f(a) (a ∈ A)

⊥ (Otherwise).

For two sets A and B, A\B means the set difference {a ∈ A | a ̸∈ B}. We need later the following laws:

A\B = (A ∪B)\B, (2.1)

A ∪B = (A\B) ∪B. (2.2)

For a function f : A → B (or f : A → B⊥), we define f : 2A → 2B (direct image function) as
f(A′) = {b ∈ B | b = f(a) for some a ∈ A′} and f−1 : 2B → 2A (inverse image function) as f−1(B′) = {a ∈
A | f(a) ∈ B′}. We will frequently uses the following law:

f(
∪
i∈I

Ai) =
∪
i∈I

f(Ai) (2.3)

where I is a possibly infinite index and Ai ⊆ A (i ∈ I). Note that (2.3) implies that f is monotone (or
order-preserving): A ⊆ B ⇒ f(A) ⊆ f(B).

3 Deterministic Automata, Homomorphisms and Subautomata

A (possibly infinite and incomplete) deterministic automaton on an alphabet Σ is a triple (Q,F , δ) where Q
is a (possibly infinite) set of states, F(⊆ Q) a set of final states, and δ a function from Σ×Q to Q⊥ called
a transition. We write δa(q) rather than δ(a, q). We often distinguish a particular state in Q as the initial
state. The components of M are denoted by QM , FM , δM respectively, and the initial state, if specified,
is denoted by iM . A deterministic automaton M is complete if δMa (q) ̸= ⊥ for any q ∈ QM and a ∈ Σ. An
automaton M is finite if QM is finite. A (resp. finite) deterministic automaton is abbreviated as DA (resp.
DFA).

Let Mi(i = 1, 2) be two DA’s on Σ. A function h : QM1 → QM2 is a (DA-)homomorphism from M1 to
M2 (written as h : M1 →M2) if q ∈ FM1 ⇔ h(q) ∈ FM2 (or equivalently, FM1 = h−1(FM2)) and

h⊥(δ
M1
a (q)) = δM2

a (h(q)) (3.1)

for any q ∈ QM1
and a ∈ Σ. Note that (3.1) implies δM1

a (q) = ⊥ ⇔ δM2
a (h(q)) = ⊥ for any q ∈ QM1

and
a ∈ Σ. It also implies ∪

a∈Σ

h(δM1
a (A)) =

∪
a∈Σ

δM2
a (h(A)) (3.2)

for any A ⊆ QM1 .

We say two automata M and M ′ on Σ is isomorphic if there exist homomorphisms f : M → M ′ and
g : M ′ → M such that g ◦ f = idM and f ◦ g = id′M where idM (resp. id′M) is the identity homomorphism
on M (resp. M ′), or equivalently, there exists a bijective homomorphism f : M →M ′.

Let M and M ′ be automata on Σ such that QM ′ ⊆ QM . We say M ′ is a subautomaton of M if the
inclusion map from QM ′

to QM gives a DA-homomorphism from M ′ to M . Note that QM ′
is closed under

δMa ; i.e., δMa (QM ′
) ⊆ QM ′

for any a ∈ Σ. We often identify a subautomaton with its states, leaving the
other components unspecified since they are uniquely determined by M ; we abuse FM and δMa in the place
of FM ′

and δM
′

a .

2

Let M be an automaton and S ⊆ QM . Consider a sequence M⟨S⟩k (k = 0, 1, . . .):

M⟨S⟩k =

{
S (k = 0)

M⟨S⟩k−1 ∪
∪

a∈Σ δa(M⟨S⟩k−1) (k > 0).
(3.3)

We define a subautomaton M⟨S⟩ of M by QM⟨S⟩ =
∪

k≥0 M⟨S⟩k. Note that when M is finite, we have

QM⟨S⟩ = M⟨S⟩k for some k ≥ 0 since M⟨S⟩k ⊆ M⟨S⟩k+1 holds for any k ≥ 0. It follows by induction
that any subautomaton of M containing S is an upper bound of M⟨S⟩k for any k ≥ 0. Therefore, M⟨S⟩
is the least subautomaton of M containing S; it is called the subautomaton generated by S. M⟨{q}⟩ (resp.
M⟨{q}⟩k) is simply written as M⟨q⟩ (resp. M⟨q⟩k). M⟨iM ⟩ (resp. M⟨iM ⟩k) is further abbreviated as M⟨⟩
(resp. M⟨⟩k) with understanding that the initial state of M⟨⟩ is iM .

A homomorphism maps a subautomaton to a subautomaton; If h : M1 → M2 is a homomorphism
and M ′

1 is a subautomaton of M1 then we can consider a subautomaton (h(QM ′
1),FM2 , δM2

a) of M2 since
δM2
a (h(QM ′

1)) = h(δM1
a (QM ′

1)) ⊆ h(QM ′
1), which we denote as h(M ′

1). Moreover, the least subautomaton
maps to the least one (Corollary 1 below).

Lemma 1 h(M1⟨S⟩k) = M2⟨h(S)⟩k for any homomorphism h : M1⟨S⟩ →M2 and k ≥ 0.

Proof. The proof is by induction on k. The case k = 0 is trivial. Otherwise, we have

h(M1⟨S⟩k) = h(M1⟨S⟩k−1) ∪
∪
a∈Σ

h(δM1
a (M1⟨S⟩k−1)) (by (3.3), (2.3))

= h(M1⟨S⟩k−1) ∪
∪
a∈Σ

δM2
a (h(M1⟨S⟩k−1)) (by (3.2))

= M2⟨h(S)⟩k−1 ∪
∪
a∈Σ

δM2
a (M2⟨h(S)⟩k−1) (by I.H.)

= M2⟨h(S)⟩k (by (3.3)).

□

Corollary 1 h(M1⟨S⟩) = M2⟨h(S)⟩ for any homomorphism h : M1⟨S⟩ →M2.

Consider a sequence M⟨⟨S⟩⟩k (k = 0, 1, . . .):

M⟨⟨S⟩⟩k =

{
S (k = 0)

(
∪

a∈Σ δa(M⟨⟨S⟩⟩k−1))\(M⟨⟨S⟩⟩0 ∪ · · · ∪M⟨⟨S⟩⟩k−1) (k > 0)
(3.4)

where S ⊆ QM .

Lemma 2 For any k ≥ 0 we have (i) M⟨S⟩k = M⟨⟨S⟩⟩0∪· · ·∪M⟨⟨S⟩⟩k and (ii) M⟨⟨S⟩⟩k+1 = M⟨S⟩k+1\M⟨S⟩k.

Proof. Let Tk = M⟨⟨S⟩⟩0 ∪ · · · ∪M⟨⟨S⟩⟩k (k ≥ 0). First note that

Tk+1 = Tk ∪
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k) (3.5)

holds since

Tk ∪
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k) = Tk ∪ (
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k)\Tk) (by (2.2))

= Tk ∪M⟨⟨S⟩⟩k+1 (by (3.4))

= Tk+1.

3

We next show (i) by course of values induction. The case k = 0 is trivial. The case k = 1 immediately
follows by (2.2). Suppose k ≥ 2. We have

M⟨S⟩k =
∪
a∈Σ

δMa (M⟨S⟩k−1) ∪M⟨S⟩k−1

=
∪
a∈Σ

δMa (Tk−1) ∪ Tk−1

=
∪
a∈Σ

δMa (Tk−2) ∪
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k−1) ∪ Tk−1

=
∪
a∈Σ

δMa (Tk−2) ∪ Tk

Applying induction hypothesis twice yields∪
a∈Σ

δMa (Tk−2) =
∪
a∈Σ

δMa (M⟨S⟩k−2) ⊆M⟨S⟩k−1 = Tk−1 ⊆ Tk,

which completes the proof of (i). Finally, the equation (ii) is proved from (i) as follows:

M⟨S⟩k+1\M⟨S⟩k = Tk+1\Tk

= (Tk ∪
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k))\Tk

= (
∪
a∈Σ

δMa (M⟨⟨S⟩⟩k))\Tk

= M⟨⟨S⟩⟩k+1.

□

4 Non-deterministic Automata and Subset Construction

Unlike the deterministic case, the transition δ of a non-deterministic automaton (Q,F , δ) on Σ is a function
from Σ×Q to 2Q. A finite non-deterministic automaton is abbreviated as NFA.

For a given NFA N on Σ, we can consider a DFA, written as det(N), such that Qdet(N) = 2Q
N

, idet(N) =

{iN} (if initial state is specified), Fdet(N) = {A ⊆ QN | A ∩ FN ̸= ∅}, and δdet(N) : Σ × 2Q
N → 2Q

N

is the
function:

δdet(N)
a (A) =

∪
q∈A

δNa (q). (4.1)

In this paper, we assume that NFA’s are given from an (incomplete) DFA M with initial state iM by
allowing an extra transition from iM to itself for any input symbol. Precisely, this NFA, say N , consists of
exactly the same components as M except for the slightly different transition

δNa (q) = {δMa (q)}\{⊥} ∪ {iM | q = iM}. (4.2)

Thanks to the very limited source of non-determinism in N , the transition of det(N)⟨⟩ is simply given as
follow:

δdet(N)
a (A) = δMa (A) ∪ {iM} (A ∈ Qdet(N)⟨⟩). (4.3)

As a consequence, iM is contained in any state of det(N)⟨⟩. We intensionally confuse the DFA M with the
NFA N whenever they are clearly distinguished by the context; e.g., we write det(M) for a DFA M .

The subset construction (or powerset construction) [7] generally refers to the process obtaining from a
given NFAN the DFA det(N)⟨⟩ by increasingly computing det(N)⟨⟩k (k = 0, 1, 2, . . .) until no longer produce
a new state (The termination is ensured as det(N) is finite). Figure 1 shows a typical subset construction

4

1: function construct
2: ∆← ∅; D ← {{iM}}; Q← {{iM}};
3: F ← {{iM} | iM ∈ FM};
4: function move(a, S)
5: T ← ∅;
6: for q ∈ S do
7: T ← T ∪ {δMa (q)};
8: return T ;

9: while D ̸= ∅ do
10: D′ ← ∅;
11: for (a, S) ∈ Σ×D do
12: T ← move(a, S);
13: ∆← ∆ ∪ {(S, a) 7→ T};
14: if T ̸∈ Q then
15: D′ ← D′ ∪ {T};
16: Q← Q ∪ {T};
17: F ← F ∪ {T} if T ∩ FM ̸= ∅;
18: D ← D′;

19: return (Q,F,∆);

Figure 1: A subset construction algorithm

algorithm. We do not discuss the correctness of this algorithm in depth here; we only remark that owing
to Lemma 2 we have for k > 0 Qk = det(M)⟨⟩k, Dk = det(M)⟨⟩k\det(M)⟨⟩k−1, and ∆k is δdet(M) whose
domain is restricted to Σ × Qk where Qk (resp. Dk, ∆k) is the value of Q (resp. D, ∆) just after k-times
iteration of the while-loop (line 9–18).

Although the overall computational cost to construct the entire DFA at worst case is exponential, it is

often sufficient to compute the values of δ
det(M)⟨⟩
a only if they are really needed at the first time (and only

once). So, we are rather concerned with the cost for one step of construction generating each DFA-state;
namely the cost for each step of inner loop (line 11-17); it is O(|QM |) since each state in det(M)⟨⟩ consist
of at most |QM | elements.

5 Automata over List Structures

For a set of state Q, consider a list structure list(Q) on it: list(Q) ∼= 1+Q× list(Q). We adopt Haskell-like
notation for data structures and write it as follows:

list(Q) = Nil | Cons {fst :: Q, rest :: list(Q)}

where Nil and Cons are constructors while fst and rest are deconstructors.

For a given DFA M on Σ, we introduce a complete DFA list(M) such that Qlist(M) = list(QM), ilist(M) =
Nil, F list(M) = {s ∈ list(QM) | vM (s) ∩ FM ̸= ∅}, and

δlist(M)
a (s) =

{
δMa (iM):Nil (s = Nil)

δMa (fst(s)):δ
list(M)
a (rest(s)) (Otherwise)

(5.1)

where vM : list(QM) → 2Q
M

interprets a list as the set of its elements, being inductively defined on list
structure:

vM (s) =

{
{iM} (s = Nil)

{fst(s)} ∪ vM (rest(s)) (Otherwise),
(5.2)

5

and q:s (optional cons) is given as follows:

q:s =

{
s (q ∈ vM (s) ∪ {⊥})
Cons q s (Otherwise).

(5.3)

Note that the initial state in list(M) is not Cons iMNil but just Nil while vM maps the empty list Nil
not to ∅ but to {iM}. This is because we prefer to choose a simpler formulation. Recall that the states in
det(M)⟨⟩ always contains iM by (4.3), so that it makes our formulation a bit simpler omitting iM from each
list in list(M) and instead interpreting each list just like it were always containing iM at its tail.

We now make a slight modification on list(M). The naive computation of vM (s) requires O(|s|) time. In
order to reduce it to O(1) we use a general technique of memoization; we will embed into s its own image
vM (s), so that the list structure is extended as follows:

listm(QM) = Nilm | Consm {fstm :: QM , restm :: listm(QM), as set :: 2Q
M

}.

Instead of vM : list(QM) → 2Q
M

, we now consider the function vMm : listm(QM) → 2Q
M

just retrieving the
memoized values embedded in the lists:

vMm (s) =

{
{iM} (s = Nilm)

as set(s) (otherwise).
(5.4)

Let eMm : listm(QM)→ list(QM) be a function just dropping all the memoized values:

eMm (s) =

{
Nil (s = Nilm)

Cons fstm(s) e
M
m (restm(s)) (otherwise).

(5.5)

Now the definition of the automaton list(M) is modified accordingly; we introduce a DFA listm(M) such
that Qlistm(M) = listm(QM), ilistm(M) = Nilm, F listm(M) = {s ∈ listm(QM) | vM (eMm (s)) ∩ FM ̸= ∅}. The
transition is defined similarly:

δlistm(M)
a (s) =

{
δMa (iM):Nilm (s = Nilm)

δMa (fstm(s)):δ
listm(M)
a (restm(s)) (Otherwise)

(5.6)

but the optional cons has changed in order to maintain the memoized values so that they properly keep the
image of vM over the transitions:

q:s =

{
s (q ∈ vM (s) ∪ {⊥})
Consm q s {q} ∪ vMm (s) (Otherwise).

(5.7)

A list s ∈ listm(QM) is properly memoized if vMm (s) = vM (eM (s)). A set A ⊆ listm(QM) is properly
memoized if any element of A is. Qlistm(M) is in general not properly memoized. We will later show that
Qlistm(M)⟨⟩ is however properly memoized so that vMm can be used as a computationally better replacement
of vM .

In what follows, we write s
a→ t for δ

listm(M)
a (s) = t. Nilm

a→ t (resp. s
a→ t (s ̸= Nilm)) is called a head

transition step if δMa (iM) ̸∈ {iM ,⊥} (resp. δMa (fst(s)) ̸∈ δ
listm(M)
a (restm(s)) ∪ ⊥). We write s

a
↪→ t if s

a→ t is
a head transition step.

Lemma 3 Suppose s
a→ t and t ̸= Nilm. We have restm

k(s)
a
↪→ t for some k ≥ 0.

Proof. By induction on the length of s. If s
a
↪→ t, we take k = 0. Otherwise, the assumption t ̸= Nilm

enforces s ̸= Nilm. Applying the induction hypothesis to restm(s)
a→ t yields restm

k(s)
a
↪→ t for some k ≥ 0.

□

6

For any t ∈ Qlistm(M)\{Nilm}, REST(t) denotes the set: {restm(t), restm2(t), . . . , restm
n(t)} where restmn(t) =

Nilm.

The next theorem states the important property of listm(M) that for each state in listm(M)⟨⟩, its proper
sublists are found in some previous subset construction step (so that we need not to reproduce them in each
subset construction step).

Theorem 1 If t ∈ listm(M)⟨⟩k\{Nilm} then REST(t) ⊆ listm(M)⟨⟩k−1 for any k > 0.

Proof. The proof is by induction on k. In the proof, we abbreviate listm(M)⟨⟩k as Sk. The case k = 1
is trivial, so we assume k > 1. Consider t ∈ Sk\{Nilm}. We will first show that restm(t) ∈ Sk−1. Take

some s ∈ Sk−1 and a ∈ Σ such that s
a→ t. Then Lemma 3 gives restm

j(s)
a
↪→ t for some j ≥ 0. Let

u = restm
j(s). If u = Nilm, we immediately obtain restm(t) = Nilm ∈ Sk−1. Hereafter, we assume u ̸= Nilm.

Consider restm(u) = restm
j+1(s). Since u ̸= Nilm implies s ̸= Nilm, applying the induction hypothesis to

s ∈ Sk−1\{Nilm} yields restm(u) = restm
j+1(s) ∈ Sk−2 from which, since u

a
↪→ t implies restm(u)

a→ restm(t),
we obtain restm(t) ∈ Sk−1. If restm(t) = Nilm, we are done: REST(t) = {Nilm} ⊆ Sk−1. Otherwise, we obtain
REST(restm(t)) ⊆ Sk−2 ⊆ Sk−1 by induction hypothesis, which concludes REST(t) = REST(restm(t)) ∪
{restm(t)} ⊆ Sk−1. □

Now, we will confirm that vMm : listm(M)⟨⟩ → det(M) is indeed a homomorphism. Before that, we needs
a few lemmata.

Lemma 4 {fstm(t)} ∪ vMm (restm(t)) = vMm (t) for any t ∈ listm(M)⟨⟩\{Nilm}.

Proof. t is reachable from another state. Hence, Lemma 3 ensures that we can find some s and a ∈ Σ such

that s
a
↪→ t. Hence, the result follows by the definition (5.7). □

The following lemma states that the set value embedded in each state s ∈ Qlistm(M)⟨⟩ is indeed vM (s) in

2Q
M

.

Lemma 5 Qlistm(M)⟨⟩ is properly memoized.

Proof. We will show by induction on k that ∀k ≥ 0,∀t ∈ Sk, v
M (eM (t)) = vMm (t) where Sk is the abbrevia-

tion of listm(M)⟨⟩k; the result then follows since t ∈ Sk for some k ≥ 0. The case t = Nilm, which covers the
case k = 0, is trivial: vM (eM (t)) = {iM} = vMm (t). Now, we treat the remaining case: t ̸= Nilm and k > 0.
Since restm(t) ∈ Sk−1 by Theorem 1, we have vM (eM (restm(t)) = vMm (restm(t)) by the induction hypothesis.
Therefore, we have

vM (eM (t)) = {fstm(t)} ∪ vM (eM (restm(t))) (by (5.2),(5.5))

= {fstm(t)} ∪ vMm (restm(t)) (by I.H.)

= vMm (t) (by Lemma 4).

□

Proposition 1 vMm : listm(M)⟨⟩ → det(M) is a homomorphism for any DFA M .

Proof. First we have s ∈ F listm(M) ⇔ vM (eMm (s))∩FM ̸= ∅ ⇔ vM (eMm (s)) ∈ Fdet(M) for any s ∈ Qlistm(M)⟨⟩.

We will show (vM ◦ eMm)⊥(δ
listm(M)
a (s)) = δ

det(M)
a (vM (eMm (s))) for any s ∈ Qlistm(M)⟨⟩ by induction on the

list structure; then the result follows by Lemma 5. The base case holds since

(vM ◦ eMm)⊥(δ
listm(M)
a (Nilm)) = ({δMa (iM)}\{⊥}) ∪ {iM}

= δdet(M)
a (iM) (by (4.1), (4.2))

= δdet(M)
a (vM (eMm (Nilm))) (by (5.5), (5.2))

7

1: function construct
2: ∆← ∅; D ← {Nilm}; Q← {Nilm}; F ← {Nilm | iM ∈ FM};
3: function move(a, s,∆)
4: return δa(i

M):Nilm if s = Nilm else δa(fstm(s)):∆(a, restm(s));

5: while D ̸= ∅ do
6: D′ ← ∅;
7: for (a, s) ∈ Σ×D do
8: t← move(a, s,∆);
9: ∆← ∆ ∪ {(a, s) 7→ t};

10: D′ ← D′ ∪ {t} if t ̸∈ Q;

11: D ← D′;
12: Q← Q ∪D;
13: F ← F ∪ {s ∈ D | fstm(s) ∈ FM ∨ restm(s) ∈ F};
14: return (Q,F,∆);

Figure 2: Construction of listm(M)⟨⟩

for any a ∈ Σ where the first equation follows by (5.6), (5.7), (5.5) and (5.2) according to δMa (iM) = ⊥ or
not. For the induction step case, we have

(vM ◦ eMm)⊥(δ
list(M)
a (Consm q s)) = ({δMa (q)}\{⊥}) ∪ vM (eMm (δlist(M)

a (s)))

= ({δMa (q)}\{⊥}) ∪ {iM | q = iM} ∪ vM (eMm (δlist(M)
a (s)))

= ({δMa (q)}\{⊥}) ∪ {iM | q = iM} ∪ δdet(M)
a (vM (eMm (s))) (by I.H.)

= δdet(M)
a ({q} ∪ vM (eMm (s)))

= δdet(M)
a (vM (eMm ((Consm q s)))

for any a ∈ Σ where the first equation follows by (5.6), (5.7), (5.5) and (5.2) according to δMa (iM) = ⊥ or
not. □

Figure 2 presents our algorithm constructing the DFA listm(M)⟨⟩ for a given M . In that, the function
move is a straightforward implemnetion of the transition (5.6). The only but crucial difference is that we refer
the transition steps constructed in the previous itaration rather than recomputing them. The justification
will be given later.

Let Qk be the value of Q just after k-times iteration of the while loop (line 6–13). Dk and ∆k are defined
similarly. It is easy to observe that

Qk =

{
D0 (k = 0)

Qk−1 ∪Dk (k > 0),
(5.8)

Dk =

{
{Nilm} (k = 0)

{move(a, s,∆k−1) | a ∈ Σ, s ∈ Dk−1}\Qk−1 (k > 0),
(5.9)

∆k =

{
∅ (k = 0)

∆k−1 ∪ {(a, s) 7→ move(a, s,∆k−1) | a ∈ Σ, s ∈ Dk−1} (k > 0),
(5.10)

Fk =

{
{Nilm | iM ∈ FM} (k = 0)

Fk−1 ∪ {s ∈ Dk | fstm(s) ∈ FM ∨ restm(s) ∈ Fk−1} (k > 0).
(5.11)

To show the correctness of the algorithm, we first confirm that the set ∆k (k ≥ 0) is a well-defined
function.

Lemma 6 For any k ≥ 0 we have the following:

8

(i) Dom(∆k+1) ⊆ Σ×Qk;

(ii) Qk ∩Dk+1 = ∅;

(iii) Nilm ̸∈ Dk+1.

Proof. We first prove (i) by induction. The case k = 0 is trivial: Dom(∆1) = Σ×D0 = Σ×Q0. For k > 0,
we have

Dom(∆k+1) = Dom(∆k) ∪ Σ×Dk (by (5.10))

⊆ (Σ×Qk−1) ∪ (Σ×Dk) (by I.H.)

= Σ×Qk (by (5.8)).

On the other hand, (5.9) implies that Dk+1 ⊆ QM\Qk (k ≥ 0), from which (ii) and (iii) immediately follows.
□

From (i) and (ii) we see that ∆k (k ≥ 0) are in fact functions, while (iii) ensures s ̸= Nilm in line 13 so
that it is reasonable to refer to fstm(s) and restm(s).

Next, we show that ∆k(a,) indeed coincides with δ
listm(M)
a whose domain is restricted to Qk−1. The

proof requires to show Dk = listm(M)⟨⟨⟩⟩k and Qk = listm(M)⟨⟩k all together.

Lemma 7 For any k ≥ 0,

(i) Dk = listm(M)⟨⟨⟩⟩k,

(ii) Qk = listm(M)⟨⟩k, and

(iii) ∆k+1(a, s) = δ
listm(M)
a (s) for any a ∈ Σ and s ∈ Qk.

(iv) Fk = Qk ∩ F listm(M)

Proof. We proceed by the induction on k. First consider the case k = 0. (i), (ii) and (iv) are obvious while
(iii) immediately follows by (5.10) as follows:

∆1(a,Nilm) = move(a,Nilm,∆0) = δa(i
M):Nilm = δlistm(M)

a (Nilm)

Next, suppose k > 0. We obtain (i) as follows:

Dk = {move(a, s,∆k−1) | a ∈ Σ, s ∈ Dk−1}\Qk−1

= {∆k(a, s) | a ∈ Σ, s ∈ Dk−1}\Qk−1

=
∪
a∈Σ

δlistm(M)
a (Dk−1)\Qk−1

=
∪
a∈Σ

δlistm(M)
a (Dk−1)\(D0 ∪ · · · ∪Dk−1)

=
∪
a∈Σ

δlistm(M)
a (M⟨⟨⟩⟩k−1)\(listm(M)⟨⟨⟩⟩0 ∪ · · · ∪ listm(M)⟨⟨⟩⟩k−1)

= listm(M)⟨⟨⟩⟩k

For (ii), we have

Qk = D0 ∪ · · · ∪Dk

= listm(M)⟨⟨⟩⟩0 ∪ · · · ∪ listm(M)⟨⟨⟩⟩k
= listm(M)⟨⟩k

9

For (iii), let a ∈ Σ and s ∈ Qk = Qk−1 ∪Dk. We distinguish two cases: either s ∈ Dk or not. First, we treat
the former case. Lemma 6 gives (a, s) ̸∈ Dom(∆k) and s ̸= Nilm. Since s ∈ Qk\{Nilm}, Theorem 1 and (ii)
gives restm(s) ∈ Qk−1. Using these facts, we obtain

∆k+1(a, s) = move(a, s,∆k) (by (a, s) ̸∈ Dom(∆k), (5.10))

= δa(fstm(s)):∆k(a, restm(s)) (by s ̸= Nilm)

= δa(fstm(s)):δ
listm(M)
a (restm(s)) (by I.H.)

= δlistm(M)
a (s) (by (5.6))

In the latter case, we immediately obtain the result using (5.10) followed by the induction hypothesis:

∆k+1(a, s) = ∆k(a, s) = δlistm(M)
a (s).

For (vi), consider s ∈ Dk. We have s ∈ Qk\{Nilm} by (5.8) and Lemma 6 (iii), hence restm(s) ∈ Qk−1 by
Theorem 1 and (ii). It also follows that

s ∈ F listm(M) ⇔ fstm(s) ∈ FM ∨ restm(s) ∈ F listm(M). (5.12)

Using these facts, we obtain

Fk = Fk−1 ∪ {s ∈ Dk | fstm(s) ∈ FM ∨ restm(s) ∈ Fk−1} (by (5.11))

= (Qk−1 ∩ F listm(M)) ∪ {s ∈ Dk | fstm(s) ∈ FM ∨ restm(s) ∈ Qk−1 ∩ F listm(M)} (by I.H.)

= (Qk−1 ∩ F listm(M)) ∪ (Dk ∩ F listm(M)) (by restm(s) ∈ Qk−1, (5.12))

= Qk ∩ F listm(M) (by (5.8)).

□

Theorem 2 The algorithm construct DFA always terminates, producing the DFA listm(M)⟨⟩.

Proof. Since listm(M)⟨⟩ is finite, listm(M)⟨⟩k\listm(M)⟨⟩k−1 eventually becomes empty for some k, which
implies by Lemma 2 (ii) and Lemma 7 (i) that Dk is empty; we finally escape from the loop, obtaining
Qk(= Qk−1) and ∆k. We have Qk = listm(M)⟨⟩k = Qlistm(M)⟨⟩ by Lemma 7 (ii) and hence F gives

F listm(M) by Lemma 7 (iv). We also have ∆k(a, s) = δ
listm(M)
a (s) for a ∈ Σ, and s ∈ Qlistm(M) by Lemma 7

(iii). Therefore, the algorithm returns the DFA listm(M)⟨⟩ as desired. □
Figure 3 shows a slightly modified version of the algorithm which eagerly updates Q and F in the

innermost loop. This modification does not affect the resulting values. To be precise, consider the first
iteration of the while loop in Figure 2. Let Q0 be the value of Q and D′

k (resp. tk) be the values of D′

(resp. t) just after k-times iterations of the innermost loop. For k > 0 we have D′
k = D′

k−1 ∪ {tk} if tk ∈ Q0

or else D′
k = D′

k−1. Similaly, let D̂k (resp. Q̂k) be the values of D and Q just after k-times iterations of

the innermost loop in Figure 3. For k > 0 we have Q̂′
k = Q̂′

k−1 ∪ {tk} if tk ∈ Q̂k−1 or else Q̂′
k = Q̂′

k−1.

and similarly D̂′
k = D̂′

k−1 ∪ {tk} if tk ∈ Q̂k−1 or else D̂′
k = D̂′

k−1. An easy induction yields D̂′
k = D′

k and

Q̂k = Q0 ∪ D′
k for k ≥ 0 (Note that we have D′

k−1 ∪ {tk} = D′
k−1 in case tk ∈ D′

k−1(= D̂′
k−1 ⊆ Q̂k−1)).

Therefore, we can conclude by iteration that the values of D (resp. Q) at each end of while loop coincide
both in Figures 2 and 3.

Now let us discuss the computational cost of the algorithm in Figure 3, especially, the cost concerning
with the steps executed in the inner loop (lines 8–13). We aim to state that this cost is O(1). To this end,
consider the usual representation of linked lists using cons-cells and pointers. Since we need to embedded to
the memoized set values, the structure of cons-cells is given as follow in C/C++ notation:

struct cell { State fst; *cell rest; SetOfState as_set; }

where State (state ofM) is an integer type of enough size whereas SetOfState a set of states implemented by
HAMT-based immutable (i.e., persistent) hash map as mentioned above. We assume that new cell(q, x,Q)

10

1: function construct
2: ∆← ∅; D ← {Nilm}; Q← {Nilm}; F ← {Nilm | iM ∈ FM};
3: function move(a, s,∆)
4: return δa(i

M):Nilm if s = Nilm else δa(fstm(s)):∆(a, restm(s));

5: while D ̸= ∅ do
6: D′ ← ∅;
7: for (a, s) ∈ Σ×D do
8: t← move(a, s,∆);
9: ∆← ∆ ∪ {(a, s) 7→ t};

10: if t ̸∈ Q then
11: D′ ← D′ ∪ {t};
12: Q← Q ∪ {t};
13: F ← F ∪ {t} if fstm(t) ∈ FM ∨ restm(t) ∈ F ;

14: D ← D′;

15: return (Q,F,∆);

Figure 3: An alternative updating Q and F in the innermost loop

1: function optcons(q, x)
2: return x if q ∈ vM (x) ∪ {⊥};
3: if H(q, x) = ⊥ then
4: H ← H ∪ {(q, x) 7→ new cell(q, x, {q} ∪ vM (x))};
5: return H(q, x);

Figure 4: The optional cons operation

allocates a new cons-cell, returning a pointer to it; the fst, rest, as set fields are set to q, x,Q respectively.
Then, the destructores are implemented as usual:

fstm(x) = x−> fst

restm(x) = x−>rest

as set(x) = x−>as set

where x is a pointer to a cons-cell. We borrow a C/C++ notation x−> f meaning (∗x).f (dereferencing
followed by a field selection).

We consider lists as immutable (persistent) data structure, which means that we never modify the fields of
cons-cells once they are created. As a result, no cycle such as x, x−>rest, . . . , x · · · −>rest−>rest = x ocuurs,
hence we can consider the length of x; the length of nil is zero; the length of new cell(q, x, {q} ∪ x−>as set)
is n+ 1. This allows us to consider the list ℓ(x) denoted by x:

ℓ(x) =

{
Nilm (x = nil)

Consm fstm(x) ℓ(restm(x)) as set(x) (otherwise).
(5.13)

The implementation of the optional cons (:) is slightly unusual. We create a new cons-cell only if it has
never been created before. In the following implementation, H is a (initially empty) map taking a pair of
state and pointer to a pointer (Figure 4).

6 Automata with Default Transition

A deterministic automata with default transition on an alphabet Σ is a DA M with initial state equipped
with a function fail : QM\{iM} → QM called a failure transition. We often write δM as gotoM and call it a

11

success transition. We abbreviate a DA (DFA) with default transition as DAf (DFAf). A DAf is regarded
as a DA if we forget the failure transition so that the notions defined for DA in the previous chapters also
make sense for DAf.

Let M and M ′ be DAf’s. A DA-homomorphism f : QM → QM ′
is called a DAf-homomorphism if it

additionally satisfies f(failM (q)) = failM
′
(f(q)) for any q ∈ QM\{iM}. DAf-isomorphism is definied similary

to the DA case.

The failure transition is used only if the value of success transition is undefined; it serves as “default”
transition or “fall back.” This idea introduces the notion of derivablity. Let M be a DAf on Σ. We say
M derives a DA M ′ with initial state if QM ′

= QM , FM ′
= FM , iM

′
= iM and finally δM

′
satisfies the

following equation:

δM
′

a (q) =

gotoMa (q) (gotoMa (q) ̸= ⊥)
iM (gotoMa (q) = ⊥ ∧ q = iM)

δM
′

a (failM (q)) (gotoMa (q) = ⊥ ∧ q ̸= iM).

(6.1)

To make this a proper inductive definition, we require that the sequence q, failM (q), failM (failM (q)), . . . even-
tually reaches to iM . A DFAf is a nice replacement of the DFA it derives in such a case that Σ is huge and
the domain of goto can be kept considerably smaller than that of the transition of the DFA. (The cost is
to compute δM from gotoM and failM for each input word, requiring amortized constant time as we will see
later.)

For a given DFA M with initial state, we consider a DAf listf (M) which is same as listm(M) equipped
with the initial state Nilm and the failure transition restm except that the (success) transition is restricted to
the head transition steps; the optional cons operation (5.7) is slightly changed as follows:

q:s =

{
⊥ (q ∈ vM (s) ∪ {⊥})
Consm q s {q} ∪ vMm (s) (Otherwise).

(6.2)

In other words, gotolistf (M) is given as

goto
listf (M)
a (s) =

{
t (s

a
↪→ t)

⊥ (Otherwise).
(6.3)

Lemma 8 Qlistf (M)⟨k⟩ = Qlistm(M)⟨k⟩ for any k ≥ 0.

Proof. The proof is by induction on k. The case k = 0 is trivial: Qlistf (M)⟨0⟩ = {Nilm} = Qlistm(M)⟨0⟩.
Suppose k > 0. To show Qlistf (M)⟨k⟩ ⊇ Qlistm(M)⟨k⟩, consider q ∈ Qlistm(M)⟨k⟩. There exists some p ∈
Qlistm(M)⟨k−1⟩ and a ∈ Σ such that p

a→ q. Theorem 1 and Lemma 3 give some p′ ∈ Qlistm(M)⟨k−1⟩ such that

p′
a
↪→ q. Since p′ ∈ Qlistf (M)⟨k−1⟩ by induction hypothesis, we conclude q ∈ Qlistf (M)⟨k⟩. The converse case

Qlistf (M)⟨k⟩ ⊆ Qlistm(M)⟨k⟩ immediately follows by induction hypothesis. □
As an immediate consequence of the above lamma, we have a counterpart of Theorem 1 for listf (M):

Theorem 3 If t ∈ listf (M)⟨⟩k\{Nilm} then REST(t) ⊆ listf (M)⟨⟩k−1 for any k > 0.

Lemma 9 listf (M)⟨⟩ derives listm(M)⟨⟩.

Proof. We consider three cases according to (6.1). Let a ∈ Σ and s ∈ listm(()QM). (1) Suppose

goto
listf (M)⟨⟩
a (s) ̸= ⊥. In this case, (5.7) and (6.2) coincide. Hence, we immediately have δ

listm(M)⟨⟩
a (s) =

goto
listf (M)⟨⟩
a (s). Otherwise, (5.6) gives δ

listm(M)⟨⟩
a (Nilm) = Nilm when s = Nilm and δ

listm(M)⟨⟩
a (s) = δ

listm(M)
a (restm(s))

when s ̸= Nilm. □

Lemma 10 For any k ≥ 0,

(i) Dk = listm(M)⟨⟨⟩⟩k,

12

1: function construct
2: ∆← ∅; D ← {Nilm}; Q← {Nilm}; F ← {Nilm | iM ∈ FM};
3: function derive(a, s,∆)
4: return ∆(a, s) if ∆(a, s) ̸= ⊥;
5: return Nilm if s = Nilm;
6: return derive(a, restm(s),∆);

7: function move(a, s,∆)
8: return δa(i

M):Nilm if s = Nilm else δa(fstm(s)):derive(a, restm(s),∆);

9: while D ̸= ∅ do
10: D′ ← ∅;
11: for (a, s) ∈ Σ×D do
12: t← move(a, s,∆);
13: continue if t ∈ ⊥;
14: ∆← ∆ ∪ {(a, s) 7→ t};
15: D′ ← D′ ∪ {t} if t ̸∈ Q;

16: D ← D′;
17: Q← Q ∪D;
18: F ← F ∪ {s ∈ D | fstm(s) ∈ FM ∨ restm(s) ∈ F};
19: return (Q,F,∆);

Figure 5: Construction of DFA with default transitions

(ii) Qk = listm(M)⟨⟩k, and

(iii) ∆k+1(a, s) = goto
listf (M)
a (s) for any a ∈ Σ and s ∈ Qk.

(iv) Fk = Qk ∩ F listm(M)

Proof. We proceed by the induction on k. First consider the case k = 0. (i), (ii) and (iv) are obvious while
(iii) immediately follows by (5.10) as follows:

∆1(a,Nilm) = move(a,Nilm,∆0) = δa(i
M):Nilm = gotolistm(M)

a (Nilm)

Next, suppose k > 0. The proofs of (i), (ii) and (iv) are the same as Lemma 7. (Note that Lemma 6 also
holds for this time.) For (iii), let a ∈ Σ and s ∈ Qk = Qk−1∪Dk. We distinguish two cases: either s ∈ Dk or
not. First, we treat the former case. Lemma 6 gives (a, s) ̸∈ Dom(∆k) and s ̸= Nilm. Since s ∈ Qk\{Nilm},
Theorem 3 and (ii) gives restm(s) ∈ Qk−1. Using these facts, we obtain

∆k+1(a, s) = move(a, s,∆k) (by (a, s) ̸∈ Dom(∆k), (5.10))

= δa(fstm(s)):derive(a, restm(s),∆k) (by s ̸= Nilm)

= δa(fstm(s)):derive(a, restm(s), goto
listf (M)⟨⟩) (by I.H.)

= δa(fstm(s)):δ
listm(M)⟨⟩
a (restm(s)) (by Lemma 9)

= gotolistm(M)
a (s) (by (6.2))

In the latter case, we immediately obtain the result using (5.10) followed by the induction hypothesis:

∆k+1(a, s) = ∆k(a, s) = gotolistm(M)
a (s).

□
The tail recursive call in derive function can be replaced with a while loop. Moreover, Q and F can be

pushed into the innermost loop as before. We result in the following simple algorithm (Figure 6).

13

1: function construct
2: ∆← ∅; D ← {Nilm}; Q← {Nilm}; F ← {Nilm | iM ∈ FM};
3: function move(a, s,∆)
4: return δa(i

M):Nilm if s = Nilm;
5: s′ ← s;
6: s′ ← restm(s

′) while ∆(a, s′) = ⊥ ∧ s′ ̸= Nilm;
7: return δa(fstm(s)):(∆(a, s′) if ∆(a, s′) ̸= ⊥ else Nilm);

8: while D ̸= ∅ do
9: D′ ← ∅;

10: for (a, s) ∈ Σ×D do
11: t← move(a, s,∆);
12: continue if t ∈ ⊥;
13: ∆← ∆ ∪ {(a, s) 7→ t};
14: if t ̸∈ Q then
15: D′ ← D′ ∪ {t};
16: Q← Q ∪ {t};
17: F ← F ∪ {t} if fstm(t) ∈ FM ∨ restm(t) ∈ F ;

18: D ← D′;

19: return (Q,F,∆);

Figure 6: An alternative updating Q and F in the innermost loop

7 Concluding Remarks

We have investigated a variant of subset construction in which the DFA-states are represented as lists of
NFA-states rather than sets. Apply this to an NFA obtained from a DFA by allowing extra moves from the
initial state into itself results, thanks to Theorem 1, in a practically more efficient algorithm than the general
subset construction. We also have adapted this to DFA with default (or failure) transitions, obtaining an
algorithm similar to KMP but allowing patterns given by arbitrary DFA’s. Our algorithm is, as a result,
very similar to Mohri’s algorithm [6] generalizing KMP.

References

[1] Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching. Commun. ACM,
35(10):74–82, October 1992.

[2] Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In
Mathematical theory of Automata, Volume 12 of MRI Symposia Series, pages 529–561. Polytechnic Press,
Polytechnic Institute of Brooklyn, N.Y., 1962.

[3] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

[4] Donald E. Knuth. On the translation of languages from left to rigth. Information and Control, 8(6):607–
639, 1965.

[5] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern matching in strings.
6(2):323–350, June 1977.

[6] Mehryar Mohri. String-matching with automata. Nordic Journal of Computing, 4.

[7] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res. Dev., 3(2):114–125,
April 1959.

[8] Shmuel Safra. On the complexity of omega-automata. In 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, USA, 24-26 October 1988, pages 319–327, 1988.

14

[9] Ken Thompson. Programming techniques: Regular expression search algorithm. Commun. ACM,
11(6):419–422, June 1968.

15

