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Abstract—Service composition frameworks hide the complexity
of the underlying technologies and enable their users to easily
compose new services from existing ones. To anticipate the
reliability of composed services before their actual operations,
it is possible for service composers to use existing model-based
software reliability prediction techniques. However, such tech-
niques either neglect or have only basic integration support into
service composition frameworks. This limits their applicability
because (1) neglecting integration support leads to high effort
and specialist knowledge required to build models necessary for
reliability predictions and (2) basic integration support likely
reduces the flexibility and reusability when integrating into
different service composition frameworks.

In this paper, we present RMPI-SerComp to offer enhanced
integration support into service composition frameworks for
RMPI, a recent model-based software reliability prediction tech-
nique. Our approach enables service composition frameworks to
achieve a systematic consideration of service reliability during
composing, without the need for any specialist knowledge of
the underlying prediction method. Via a case study, we validate
the applicability of our approach by utilizing RMPI-SerComp
to integrate the reliability prediction capability into a service
composition framework.

Index Terms—Reliability-aware service compositions, integra-
tion support of reliability prediction.

I. INTRODUCTION

Software providers and consumers have gained more and
more interest in service-oriented software systems. For both
sides, this can help to reduce build-up time and infrastructure
cost, as well as to advantage management [1]. Besides single
services, service providers also offer composed services on
demand, under customer requests. In order to enable intuitive
creation of composed services without specialist knowledge of
the underlying technologies, service composition frameworks
(e.g. [2]–[4]) have come into view.

Besides functional properties (e.g. correctness), quality
properties (e.g. reliability, performance, security, etc.) are
becoming more important to attain and assure the acceptance
of users. Analyzing reliability of composed services (i.e. the
probability of failure-free operation in a given time span) is
apparently a challenge because:
• Services can be composed in a dynamic manner, leading

to multiple compositions to be analyzed.
• Creating and testing each possible composition requested

by customers are usually not feasible as it is resource- and
time-consuming to conduct on all compositions and/or
invoking services may be charged.

Using existing model-based software reliability prediction
techniques is a potential solution to this problem. Being based
on the service model and its reliability-influencing factors, they
use analytical calculations or simulations to predict the service
reliability, without any actual executions of the service.

However, many existing model-based software reliability
prediction techniques (e.g. [5]–[7]) are missing integration
support into service composition frameworks. As a result,
service composers have to apply these prediction techniques
separately, via manually specifying the input information
necessary for reliability predictions. This manual specification
is laborious, error-prone and not always possible because of
the missing knowledge regarding the inner characteristics of
the service model. Moreover, for many prediction techniques,
service composers are required to have specialist knowledge
(e.g. Markov models) and to understand the details of the
prediction techniques (e.g. the mappings of services or their
internal behavioral states to Markov states). Manual reliability
prediction is ineffective and difficult to accomplish for service
composers, especially when it is to be done repeatedly for
composed services requested by customers and their possible
composition alternatives. On the other hand, existing tech-
niques (e.g. [8]) that offer basic integration support typically
lack a public Application Programming Interface (API) and
a plug-in architecture for their integration support. These two
factors are necessary to achieve the flexibility and reusability
when integrating into different service composition frame-
works. By utilizing the public API, integrations can be adapted
according to integration requirements. The plug-in architecture
enables sharing and reusing integration parts.

Contribution: In this paper, we present the RMPI-SerComp1

to offer enhanced integration support into service composition
frameworks for RMPI2 [9], our recent model-based software
reliability prediction technique. With RMPI-SerComp, the
standard service composition process of service composition
frameworks can be enhanced to become a reliability-aware
service composition process, which includes reliability pre-
diction for composed services as well as supports the decision
between different composition alternatives. RMPI-SerComp
offers a public API and a plug-in architecture for flexible
and reusable integrations into service composition frameworks.
RMPI-SerComp is realized via a set of components and their

1SerComp: Service Compositions
2RMPI: Reliability Modeling, Prediction, and Improvements



interactions. We validate our approach in a case study where
we utilize RMPI-SerComp to enhance a service composition
framework with the reliability prediction capability.

Structure: The rest of this paper is organized as follows:
Section II introduces the existing foundations of our approach.
Section III surveys related work. Section IV describes our
recommended reliability-aware service composition process.
Section V describes in detail RMPI-SerComp’s architecture
and its workflow. Section VI demonstrates our approach with
a case study. Section VII discusses our assumptions and
limitations, and Section VIII concludes the paper.

II. FOUNDATIONS

In this section, we briefly introduce the main related re-
search areas of our approach: service compositions and model-
based software reliability prediction. Service compositions
provide a flexible way for software creation, but it is also
challenging to assure the reliability of dynamically composed
services. Model-based software reliability prediction offers the
ability to model and predict the reliability of software systems,
which can be embedded and utilized throughout a software
engineering process.

A. Service Compositions

Software service is a self-describing entity that encapsulates
its contents (i.e. functionalities and data) and is accessible
via its interface [1]. This information is sufficient for service
compositions, i.e. orchestrating existing services to provide
more functionalities as new services. A workflow3 is often
used to describe the composition of services, using pro-
gramming or modeling languages such as WS-BPEL (Web
Services Business Process Execution Language) [1]. In recent
years, service composition frameworks (e.g. BizTalk Server
[2], Oracle BPM [3], jBPM [4]) have been developing to
make service compositions easier for users with little or even
zero programming experience through intuitive and flexible
development environments. In order to assess the value of
composed services, it is necessary to evaluate not only their
functional properties but also their quality properties [12].

B. Model-based Software Reliability Prediction

Fig. 1 depicts a general model-based reliability prediction
process [13]–[15]. It starts with the model of a software
system. Usually, this model exists as a part of a software
engineering process and typically, is expressed using design-
oriented modeling languages, e.g. UML (Unified Modeling
Language), ADL (Architecture Description Language).

Predicting reliability requires additional data which is not
yet present in the system model. Therefore, in Step 1, the
modeler needs to annotate the system model with reliability-
relevant data. The amount of additional data is highly de-
pendent on the concrete prediction approaches. In general,
the annotations include failure possibilities in the system and
usage characteristics of the system.

3Basically, any other kinds of glue code could also be used, e.g. [10], [11].
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Fig. 1. Model-based software reliability prediction.

In Step 2, the annotated system model is transformed into
a reliability analysis model, e.g. a Markov model, a Bayesian
network. The analysis model is then solved by an analyzer or
a simulator to obtain prediction results in Step 3. The set of
available results is dependent on the modeling formalisms as
well as its solver.

Finally, the prediction results are related back to the begin-
ning system model in Step 4. This feedback is supposed to
support the modeler in answering evaluation questions, e.g.
which parts of the system are most likely to cause failures?.
The last three steps should be performed automatically by
tools.

III. RELATED WORK

Seminal work in software reliability engineering [16] fo-
cuses on system testing and reliability growth models treating
systems as black boxes. Recently, many model-based soft-
ware reliability prediction approaches have been proposed
[13]–[15], treating systems as compositions of components
or services. In the following, we examine these approaches
with respect to integration support into service composition
frameworks, targeting at automated and transparent-to-service-
composers reliability predictions in these frameworks.

Cheung’s approach [17], a well-known representative of the
field, expresses the control flow between components in a
software system using an absorbing Discrete-Time Markov
Chain (DTMC) and encodes the usage profile of the sys-
tem into their transition probabilities. The approaches of
Cortellessa et al. [18] and Filieri et al. [19] build on the
same formalism and superimpose error propagation models.
The approach of Wang et al. [20] extends the formalism
to capture heterogeneous software architectures incorporating
different architectural styles. Further approaches building on
the Cheung’s model include the approach of Sharma et al. [21]
which takes into consideration the possibilities of component
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restarts and application retries, the approach of Sharma et al.
[22] which offers combined predictions of multiple quality
attributes, the approach of Lipton et al. [23] which con-
ducts reliability optimization. These approaches are tailored to
component-based software systems and disregard integration
support into service composition frameworks.

The approach of Reussner et al. [24] is based on Rich
Architecture Definition Language (RADL) but employs the
same underlying theory as Cheung’s approach for reliability
predictions. The approach of Reussner et al. can be seen as a
precursor of the approach of Brosch et al. [25] which offers a
parameterized reliability prediction taking into consideration
the influences of the system’s usage profile and the system’s
execution environment. The approach of Cheung et al. [26]
is specifically tailored to component-level reliability predic-
tion. These approaches also disregard integration support into
service composition frameworks.

Scenario-based approaches such as the approach of Yacoub
et al. [27] which constructs component dependency graphs
from component sequence diagrams as a basic for reliability
predictions, the approaches of Cortellessa et al. [28], Popic et
al. [29], and Goseva et al. [30] which employ UML diagrams
annotated with reliability properties, the approach of Ro-
drigues et al. [31] which is based on message sequence charts,
also disregard integration support into service composition
frameworks.

The approaches of Grassi [5], Cortellessa et al. [6], and
Zheng et al. [7] aim at reliability prediction for service-
oriented architectures (SOA). The approaches of Grassi and
Cortellessa et al. consider recursively composed services,
where each service may invoke multiple external services
in order to complete its own execution. The approach of
Zheng et al. employs a workflow description for composite
services with sequential, looping, and parallel structures. The
approach of Grassi et al. [32] reuses a number of concepts
of the approach of Grassi [5] and proposes the Kernal Lan-
guage for Performance and Reliability Analysis (KLAPER).
However, these approaches do not consider automated and
transparent-to-service-composers predictions in service com-
position frameworks.

The approach of Klatt et al. [8] considers integration support
into service composition framework and is currently based
on the approach of Brosch et al. for reliability predictions.
However, it does not consider a public API and a plug-in
architecture for their integration support, which are the two
important factors to offer the flexibility and reusability when
integrating into different service composition framework.

We described RMPI, which is our recent model-based
software reliability prediction technique and do not related to
integration support into service composition frameworks, in
our former work [9], [33].

IV. RELIABILITY-AWARE SERVICE COMPOSITION
PROCESS

In this section, we present our recommended reliability-
aware service composition process. It is enhanced from the

standard service composition process [1] to include general
steps to create composed services that satisfy the given relia-
bility requirements and to regard generic reliability-influencing
factors of composed services.

At the generic level, the reliability of a composed service is
dependent on: (1) its composition workflow (i.e. the control
and data flow between involved services), (2) the failure
possibilities of required external services, and (3) its usage
profiles (e.g. how often the composed service is used).

At the essence level, similar to any other kinds of software
systems, faults in the implementations of required external
services are the root causes for failures of the composed
service and error propagation in the composition workflow is
crucial in the chain leading to failures of the composed service
[34]. Besides basic control flow structures (i.e. sequential,
branching, or looping structures), the composition workflow
of a composed service can employ parallel structures and
fault tolerance structures to improve the service performance
and the service reliability, respectively. Employing parallel
structures could lead to concurrent error propagation paths
as well as concurrently present errors and employing fault
tolerance structures could involve non-trivial error detection,
error handling, and fault handling activities [9].

Notice that the underlying model-based software reliability
method should be chosen in such a way that it explicitly take
all the factors mentioned above into consideration for accurate
prediction results.

Fig. 2 describes our recommended process with six steps,
including familiar steps of the standard service composition
process (shown in grays). The service composer (i.e. the
user of a service composition framework) is responsible to
conduct these steps. The top of the figure shows the customer’s
requirements that the composed service must satisfy under
the given usage profiles. Artifacts related to external services
(e.g. their descriptions and failure models expressing failure
possibilities) are shown at the bottom of the figure.

Step 1 is to create an abstract service composition workflow
starting from the scratch or selecting from a repository of
existing workflows. To realize the composed service, the
abstract composition workflow includes abstract dependencies
on external services and possibly sets of candidates that match
these dependencies. There might be multiple candidates avail-
able for each dependency but with different failure models.
Fig. 3a shows an example of a simple abstract composition
workflow, including a set of abstract service dependencies
(asd1, ..., asd4), their candidates, and basic control flow
structures (a sequential structure, a branching structure with
branching conditions, and a looping structure with a loop
count).

From the abstract workflow, the service composer selects a
candidate for each abstract dependency, yielding the concrete
service composition workflow in Step 2. Fig. 3b shows an
example of a simple concrete composition workflow with
selected external services (s11, ..., s42).

In Step 3, from all the relevant information in the usage
profiles, the concrete service composition workflow, the failure
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Fig. 3. Service composition workflows: (a) Abstract and (b) Concrete.

models of external services, and the reliability requirements,
it is possible to automatically derive a reliability prediction
model which, in turn, is used by an automated reliability
prediction to provide feedback regarding the possibility of
the service composition to satisfy the customer’s reliability
requirements. Because of these automations, the service com-
poser does not need to have any specialist knowledge of the
underlying reliability prediction method.

If the feedback shows that the customer’s reliability require-
ments can be met, Step 6, binding and publishing the com-
posed service, is performed. Otherwise, the service composer
can revise the service selection (e.g. selecting other external
service candidates with different failure models), or the com-
position workflow (e.g. introducing fault tolerance structures)
in Step 5 and then repeat the prediction. The feedback can
also include information to guide the revising process, e.g.

identifying the most critical parts of the composition workflow.
All of these may be repeated multiple times, without any actual
executions of the composed service. If the composer cannot
create any feasible offers in reply to the customer’s request,
he rejects the request as in Step 4.

V. RMPI-SERCOMP

In this section, we describe RMPI-SerComp. It offers en-
hanced integration support into service composition frame-
works for RMPI [9]. With RMPI-SerComp, service com-
position frameworks can achieve a systematic consideration
of service reliability during composing, according to our
recommended reliability-aware service composition process.

Initially, RMPI was tailored towards component-based soft-
ware systems. However, it can also be used to provide reliabil-
ity modeling and prediction for composed services, explicitly
taking into consideration all the reliability-influencing factors
mentioned in Section IV. It has been realized in RMPISchema
and RMPITool. RMPISchema is a developer-friendly reliabil-
ity modeling language to capture comprehensively different
reliability-influencing factors into a reliability model of the
system under study. RMPITool offers an automated evaluation
of the system reliability model to obtain prediction results.
RMPI has been successfully evaluated in several case studies
[9], [33].

A. Architecture and Prediction Workflow

Fig. 4 shows the architecture of RMPI-SerComp, including
existing components of RMPI (shown in gray) and newly
added components. For standalone reliability predictions, the
software architect uses RMPISchema to create a reliability
model of the system under study. Based on the created system
reliability model, he manually interacts with RMPITool via
a command line interface (CLI) (provided by component
RMPICLI) to validate the model and then to obtain pre-
diction results by activating analytical calculations (provided
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by component RMPICalulator) or simulations (provided by
component RMPISimulator). As an alternative to the manual
interaction, component SerCompAPI has been developed to
offer a public API covering all the capabilities of RMPI (i.e.
generating and validating system reliability models, conduct-
ing predictions, and obtaining prediction results).

As a user of service composition frameworks, the service
composer expects the transparency of reliability prediction
details. From his viewpoint, the inputs necessary for the
prediction are specified in a user-friendly way via the user
interfaces of the service composition frameworks. Internally,
these inputs are translated into a valid input format for the
underlying reliability prediction method. In case of RMPI-
SerComp, in order to enable multiple framework integrations,
different input translators can be developed by utilizing the
API provided by component SerCompAPI and then registered
as plug-ins in component SerCompTranslators via component
SerCompMediator.

The service composer also expects that the prediction results
are returned as feedback in a understandable and expressive
form, e.g. saying that the given reliability requirements cannot
be met, representing prediction results as a graph. Therefore,
similar to the case of input translators, it is possible to develop
multiple feedback generators for different presentations of
prediction results as feedback for the service composer and
register them as plug-ins in component SerCompGenerators.

Fig. 5 shows the prediction workflow of RMPI-SerComp
with five internal steps. These steps are controlled and carried

out automatically by component SerCompMediator. First, the
inputs provided by the composition framework and its user are
translated by the chosen translator plug-in into an input model
for RMPI. As a translator plug-in can produce an unexpected
input model, it is necessary for this input model to be adjusted
(optionally) and validated to make sure that it is in a valid form
with all the relevant information.

Based on the valid input model, prediction results are
obtained by conducting predictions via analytical calculations
or simulations. Because it is possible to use any of the two
methods, as well as to use simulations multiple times, the next
step is to check and process these results (e.g. computing mean
values) before delivering them to generator plug-ins to create
presentations of prediction results as feedback for the service
composer.

Remark: With its public API and plug-in architecture,
RMPI-SerComp allows developing and employing different
input translators and feedback generators, offering flexible
and reusable integrations into service composition frameworks
for RMPI. This plug-in architecture also decouples service
composition frameworks from RMPI, supporting individual
changes from both sides. For example, if the format of the
inputs from a service composition framework changes, only
the corresponding input translator needs to be updated while
RMPI stays unchanged. As another example, if prediction
results from RMPI change their formats, it is required to
update only feedback generators.

B. TranslatorPlug-ins

An input translator plug-in is to translate inputs from a
service composition framework into a valid input model for
RMPI (i.e. input model of an equivalent component-based
software system). These inputs include: (1) reliability require-
ments for the composed service, (2) usage profiles for the
composed service, (3) the concrete service composition work-
flow of the composed service, (4) failure models of external
services required by the composition workflow, and (5) run
configuration settings, e.g. method for reliability predictions
(analytical calculation or simulation), maximum simulation
time. Formats of these inputs depend on concrete service
composition frameworks and can be proprietary or standard
formats (e.g. XML - eXtensible Markup Language, BPMN
- Business Process Model and Notation). It is the task of
framework integrators to develop input translator plug-ins.

Let SR be the set of reliability requirements for the
composed service, UP = {upi} with i ∈ {1, 2, ...,m} be
the set of m usage profiles for the composed service, sn be
the composed service’s name, CW be the concrete service
composition workflow of the composed service, XS = {sj}
with j ∈ {1, 2, ..., n} be the set of n required external
services for the composed service, and FM = {fmj} with
j ∈ {1, 2, ..., n} be the failure models of the required external
services where fmj is the failure model of required external
service sj , RCS be the set of run configuration settings.

Then, an input translator plug-in translates these inputs into
an input model of an equivalent component-based software
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system for RMPI by utilizing the public API of RMPI-
SerComp as follows (see also Fig. 6):

• For each required external service sj ∈ XS , one com-
ponent Cj is created in the resulting input model. Com-
ponent Cj provides one service sj . The implementation
of provided service sj includes one internal activity. The
activity has fmj ∈ FM as its failure model.

• One component C is created in the resulting input model.
Component C requires n services sj with all j ∈
{1, 2, ..., n} and provides one service sn. The implemen-
tation of provided service sn has its flow similar to the
flow of composition workflow CW . For each dependency
on external service sj in composition workflow CW ,
there is a calling activity at the corresponding position in
the implementation of provided service sn to call required
service sj of component C.

• A system architecture is created in the resulting input
model. Within it, there are one component instance of
component C and n component instances of n component
Cj for all j ∈ {1, 2, ..., n}. There are also component
connectors from provided service sj of the instance of
component Cj to required service sj of the instance of
component C for all j ∈ {1, 2, ..., n}. Provided service
sn of the instance of component C is exposed as a user
interface for users.

• A usage profile is created in the resulting input model.
It has upi ∈ UP as its usage profile part for all i ∈
{1, 2, ...,m}. All of the usage profile parts refer to the
user interface.

• The set of reliability requirements for the composed
service, SR, and the set of run configuration settings,
RCS , are simply passed through.
Remark: The expressiveness of the public API of RMPI-

SerComp is equal to that of RMPISchema (i.e. the reliability
modeling language of RMPI) with regard to control flow
structures, failure models, and usage profiles. Therefore, it is
possible to support the translation for multiple control flow
structures (including sequential, branching, looping, parallel,
and different fault tolerance structures) in service composition
workflows, comprehensive failure models (with multiple fail-
ure types, concurrent present errors, error propagation, etc.)
of external services, and flexible usage profiles of composed
services. The case study in Section VI shows several examples
of inputs from a service composition frameworks.

C. GeneratorPlug-ins

A feedback generator plug-in is to generate a presentation
of prediction results as feedback for the service composer.
Framework integrators are responsible to develop feedback
generator plug-ins. Prediction results delivered to a generator
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plug-in by RMPI-SerComp include not only the predicted
reliability of the composed service but also its predicted failure
probabilities of different failure types.

Let AS be the set of all possible sets of failure types of the
composed service, fp (F : F ∈ AS) be the predicted failure
probability of failure types F of the composed service, R be
the predicted reliability of the composed service, PR be the
set of prediction results for the composed service, then PR =
{R, fp (F ) : ∀F ∈ AS} such that R+

∑
∀F∈AS fp (F ) = 1.

Considering reliability requirement sr ∈ SR for the com-
posed service, then sr belongs to either Type I or Type II:
• Type I - A requirement for the reliability of the composed

service: Reliability > / ≥ cR with 0 ≤ cR ≤ 1 (i.e.
the reliability of the composed service is required to be
greater than/greater than or equal to cR, respectively).

• Type II - A requirement for the failure probabil-
ity of failure types F of the composed service:
Failure probability of F < / ≤ cF with 0 ≤ cF ≤ 1
(i.e. the failure probability of failure types F of the
composed service is required to be less than/less than
or equal to cF , respectively).

Then, by comparisons between reliability requirements sr ∈
SR with the corresponding prediction results pr ∈ PR, it is
possible for a feedback generator plug-in to derive different
presentations of prediction results (e.g. textual, tabular, or
graphical presentation):
• In case sr belongs to Type I: if R > / ≥ cR (i.e. the

predicted reliability of the composed service is greater
than/greater than or equal to cR, respectively), sr is
satisfied. Otherwise, sr cannot be met.

• In case sr belongs to Type II: if fp(F ) < / ≤ cF (i.e.
the predicted failure probability of failure types F of the
composed service is less than/less than or equal to cF ,
respectively), sr is satisfied. Otherwise, sr cannot be met.

• The set of reliability requirements SR is satisfied if all
sr ∈ SR are satisfied. Otherwise, SR cannot be met.

Fig. 7 shows an example of a tabular presentation of predic-
tion results. In this example, AS = {{F1} , {F2} , {F1, F2}}
(where {F1, F2} is the concurrent presence of two failure types

F1 and F2), SR including three reliability requirements is
shown in column 1, and PR including four prediction results
is shown in column 3. There is no requirement related to
the failure probability of failure types {F1, F2} (a blank cell
at column 1 row 5). Column 2 shows satisfaction states of
reliability requirements. Because all requirements are satisfied,
SR is satisfied as summarized in the last row. The case study
in Section VI also shows different possible presentations of
prediction results.

Remark: Besides the standard integration scenario de-
scribed above, based on the inputs from service composition
frameworks, multiple input models for RMPI can be created
by an input translator plug-in to reflect a family of similar
service compositions or to vary values of the parameters in the
inputs, accounting for existing uncertainties of the parameters.
As a result, multiple corresponding sets of prediction results
are delivered to feedback generator plug-ins, which can be
based on to generate presentations for supporting the decision
between the similar service compositions or studying the
effects of the variations of the parameters in the inputs to
the prediction results (a.k.a sensitivity analyses).

D. Implementation

We have implemented RMPI-SerComp as a Java library. As
described above, framework integrators can utilize this library
to develop different translator and generator plug-ins as well
as to programmatically trigger RMPI-SerComp’s prediction
workflow. The library also supports publishing the prediction
workflow as a SOAP-based web service. This service can
be invoked remotely and returns presentations of prediction
results to its callers.

The implementations of RMPI-SerComp is open source and
available at our project website [35].

VI. CASE STUDY EVALUATION

A. Evaluation Goals

This section serves to validate the applicability of our
approach. The goals of the validation are to (i) demonstrate
RMPI-SerComp’s capability in integrating the reliability pre-
diction according our recommended process (see Section IV)
into a service composition framework and (ii) provide a ratio-
nale for the validity of RMPI-SerComp’s prediction workflow.

B. Framework Integration

The system chosen for the case study is a workflow sys-
tem. It allows designing and executing workflows in which
different activities (e.g. web services, Java objects, published
workflows, ...) are orchestrated to solve business problems.

Although different activity types can be employed in a
workflow, in this case study, we focus on the parts of the
system (i.e. its architecture and functionality) that are involved
in compositions of web services and therefore describe only
these parts. Fig. 8 shows an extract of the involved system
architecture. Component ActivityRepository manages informa-
tion about the existing web services including external web
services as well as internal ones (i.e. workflows published as

7



ActivityRepository

SolutionBuilder WorkflowEngine ExternalService ...

Fig. 8. The workflow system’s architecture

web services). In addition to the workflow management capa-
bility, component WorkflowEngine also provides an execution
environment for executing, testing, and debugging workflows.
Component SolutionBuilder enables composing from existing
web services via its user interface.

The workflow system does not include any support for
reliability predictions. We utilized the capability of the system
itself to develop two supporting workflows:
• Workflow inputFailureModels is used to provide addition-

ally failure models for existing web services.
• Workflow inputReliabilityRequirementsAndUsageProfiles

is used to provide additionally reliability requirements
and usage profiles for the composed service.

Utilizing RMPI-SerComp as the Java library4, we developed
and then registered with the library four prototype plug-ins:
one input translator plug-in, named WorkflowTranslator, and
three feedback generator plug-ins, named TextualGenerator,
TabularGenerator, and HybridGenerator. The translator plug-
in is to translate XML-based inputs (see Section V-B) from
the workflow system into a valid input model for RMPI. The
three generator plug-ins are to generate textual, tabular, and
hybrid presentations of the prediction results, respectively (see
also Section VI-C).

We also utilized the library to publish RMPI-SerComp’s
prediction workflow as a SOAP-based web service and devel-
oped one more supporting workflow, named predictReliability,
for invoking this web service to obtain different presentations
of prediction results. With all the there supporting work-
flows, our recommended reliability-aware service composition
process (see Section IV) has been realized in the workflow
system as shown in Fig. 9 (Several parts of the process are
omitted for the sake of clarity). In the process, the service
composer uses workflow predictReliability to obtain a textual,
tabular, or hybrid presentation of prediction results of the
composed service as feedback. In other words, the workflow
system has been integrated with the reliability prediction
capability. As a result, RMPI-SerComp has demonstrated its
capability in integrating the reliability prediction according our
recommended process into a service composition framework
(Goal (i) in Section VI-A).

C. Validity of RMPI-SerComp’s Prediction Workflow

To achieve Goal (ii) in Section VI-A, we take the report-
ing service of a document exchange server, which allows

4For a full documentation and examples, refer to our project website [35]

inputReliabilityRequirements

AndUsageProfiles

inputFailureModels

Service failure 

models

Service 
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Reliability 

requirements
Usage profiles

Concrete 
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Different presentations 

of prediction results

START END

...

START END

...predictingReliability

START END

3

Fig. 9. Reliability-aware service composition process in the workflow system.
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Fig. 10. The reporting service in the workflow system’s modeling notation.

generating reports about pending or released documents. The
reliability of this service and its variants has been analyzed in
our former study [9] using RMPI.

Using the modeling notation of the workflow system (i.e.
using service composition workflows), Fig. 10 presents the
reporting service’s variant in which only the multi-try-catch
fault tolerance mechanism is used (i.e. variant Only MTCS
in the former study) as an example. Services from S1 to S8

in this service composition workflow correspond to internal
activities from a1 to a8 in component implementations of the
reporting service when modeled using RMPI.

Service S1 handles incoming report requests from clients.
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TABLE I
TWO USAGE PROFILES FOR THE REPORTING SERVICE.

No. Probability Information
1 0.8 p(requestType=generate)=0.78

p(aboutPendingDocuments=true)=0.56
average(numberOfRecentReports)=2

2 0.2 p(requestType=generate)=0.25
p(aboutPendingDocuments=true)=0.47
average(numberOfRecentReports)=4

TABLE II
RELIABILITY REQUIREMENTS FOR THE REPORTING SERVICE.

Reliability requirements
Reliability >= 0.996
Failure probability of {FP1,FP2} < 0.0006
Failure probability of {FS2} <= 0.0006

Gateway Decision1 operates as a branching structure: if an
incoming request is about generating a new report (request-
Type=generate), the gateway directs the control and data flow
along its above link; otherwise (i.e. the incoming request is
about viewing recently generated reports), the gateway directs
the flow along its below link. Two gateways BeginLoop and
EndLoop form a looping structure with numberOfRecentRe-
ports as its loop count and using service S2 to get a recently
generated report. Service S3 generates the skeleton for the
requested report. Gateway Decision2 directs the control and
data flow along its above link if the requested report is about
pending documents (aboutPendingDocument=true); otherwise
the gateway directs the flow along its below link. Gateways
Fork and Join form a parallel structure using services S4 and
S5 to get information about pending documents which are
attached in emails and stored in file systems, respectively.
Service S6 gets information about released documents from
the logs. Gateway FailureHandlingNode has the ability to
handle a signaled failure of service S6 and then directs the
control and data flow to service S7 to get information about
released documents from the database instead. With all the
necessary information about documents, service S8 fills the
content for the requested report.

For this case study, we reused the failure models of corre-
sponding internal activities from the former study as the failure
models for services from S1 to S8. We also created two usage
profiles to model the same usage scenarios of the reporting
service as in the former study. Table I shows these usage
profiles. They mean that with probability 0.8, clients access the
reporting service with usage profile 1 and with probability 0.2,
they access with usage profile 2. Each usage profile contains
two probabilities and one average to determine the branching
probabilities at two gateways Decision1 and Decision2, and
the average number of loops at gateway BeginLoop.

We set the reliability requirements for reporting service as
in Table II. The reliability of the reporting service is required
to be greater than or equal to 0.996. It is required that failure
probability of failure types {FP1,FP2} is less than 0.0006.
The failure probability of failure type {FS2} is required to be

Fig. 11. Hybrid presentation of the prediction results of the reporting service.

less than or equal to 0.0006.
By following the process in Fig. 9, we obtained different

presentations of the prediction results of the reporting service’s
variant. Fig. 11 shows the hybrid (including textual, tabular,
and graphical) presentation as an example. All the prediction
results are exactly the same as those of the former study. As
the predicted reliability of the reporting service’s variant is
0.995938266 < 0.996, the first requirement cannot be satisfied,
leading to a conclusion that “Given reliability requirements
cannot be met.”. {FS1} and {FS3} are the most frequent fail-
ure types, therefore, in order to achieve the first requirement,
the service composer may recognize the need to introduce fault
tolerance mechanisms for these failure types or to exchange
services S1, S3, or S8, which cause these failure types, with
more reliable candidates.

All of the above results give evidence that RMPI-SerComp’s
prediction workflow, along with the plug-ins, gives accurate
presentations of prediction results in this case.

VII. ASSUMPTIONS AND LIMITATIONS

The reliability prediction integrated into service composition
frameworks via utilizing RMPI-SerComp is entirely powered
by RMPI. Therefore, it shares the same set of assumptions
and limitations with RMPI. For example, RMPI assumed that
reliability-related behaviors of parallel branches of a parallel
structure are independent, hence if the composition workflow
of a composed service includes a parallel structure where the
assumption is violated, then the integrated reliability prediction
could lead to incorrect prediction results. We refer to our
former work [9] for a detailed discussion of the assumptions
and limitations of RMPI as well as techniques to relax them.
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VIII. CONCLUSION

In this paper, we presented RMPI-SerComp to offer en-
hanced integration support into service composition frame-
works for RMPI, our recent model-based reliability prediction
technique. With RMPI-SerComp, service composition frame-
works can realize our recommended reliability-aware service
composition process, enabling a systematic consideration of
service reliability during composing without requiring special-
ist knowledge of the underlying prediction method. RMPI-
SerComp offers a public API and a plug-in architecture for
flexible and reusable integrations into service composition
frameworks. Via a case study, we demonstrated the applicabil-
ity of our approach by utilizing RMPI-SerComp to enhance a
service composition framework with the reliability prediction
capability according to our recommended process.

We plan to continue enhancing RMPI-SerComp, to in-
clude pre-installed translator and generator plug-ins for RMPI-
SerComp, and to validate further our approach. These exten-
sions will further increase the applicability of our approach.
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