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This paper presents an implementation of different matrix-matrix multiplication routines in OpenCL.

We utilize the high-performance GEMM (GEneral Matrix-Matrix Multiply) implemen- tation from

our previous work for the present implementation of other matrix-matrix multiply routines in Level-3

BLAS (Basic Linear Algebra Subprograms). The other routines include SYMM (Symmetric Matrix-

Matrix Multiply), SYRK (Symmetric Rank-K Update), SYR2K (Symmetric Rank-2K Update), and

TRMM (Triangular Matrix-Matrix Multiply). A key in our approach is to copy given matrix data

by copying OpenCL kernels into a form such that a high-performance GEMM kernel can be utilized

for computation. We use a previously developed auto-tuning system for the highly optimized copying

kernels as well as for GEMM kernel. The performance evaluation of our implementation is conducted on

four different GPUs (AMD Radeon R9 290X, FirePro W9100, Radeon HD 7970, and NVIDIA GeForce

GTX Titan), a many-core processor (Intel Xeon Phi 5110P), and a multi-core processor (Core i7

3960X). The evaluation results show that the tuning on the copying kernels is effective and contributes

to develop high-performance BLAS3 routines.
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1 Introduction

As an interface of numerical software library, Basic Linear Algebra Subprograms (BLAS)
is widely used in scientific and engineering communities. The BLAS consists of three
levels. The Level-1 BLAS is a collection of vector-vector routines, the Level-2 BLAS is
dedicated to matrix-vector routines, and the Level-3 BLAS (BLAS3) includes matrix-
matrix routines. Processor manufactures, universities, and research institutions have
struggled to develop highly-tuned BLAS libraries since the publication of BLAS stan-
dard [9, 4].

The General Matrix-Matrix Multiply (GEMM) routine is considered to be the most
fundamental BLAS3 routine. Utilizing a tuned GEMM routine as the core compu-
tation is generally accepted approach to implement other BLAS3 matrix-matrix rou-
tines by considering each of the other routines as a combination of GEMM and a
small amount of Level-1 and Level-2 BLAS computations [9]. Igual et al. [6, 5] pre-
sented high-performance BLAS3 based on cuBLAS library. They made experiments on
three different GEMM-based algorithms for each BLAS3 routine. Their implementation
showed better performance without touching underlining CUDA kernels than simply
using BLAS3 routine of cuBLAS.

Auto-tuning is an important technique to resolve the problem of performance porta-
bility, and it is a well accepted solution for developing high-performance BLAS imple-
mentation. ATLAS (Automatically Tuned Linear Algebra Software) [15] is famous
projects for auto-tuned BLAS routines on CPUs. Also, several auto-tuning systems for
GEMM have been developed [2, 7, 12, 10, 3, 11]. In CUDA, an auto-tuning framework
for NVIDIA GPUs has been implemented [10]. In OpenCL, Du et al. [3] presented
auto-tuned GEMM routines for GPUs. In our previous work [11], we have also imple-
mented an auto-tuning system for a high-performance GEMM kernel in OpenCL. The
GEMM routine is realized with an approach that copies all matrix data into buffers and
then runs the auto-tuned GEMM kernel. This present work extends the approach with
the matrix data copying for other BLAS3 routines including Symmetric Matrix-Matrix
multiply (SYMM), Symmetric Rank-K update (SYRK), Symmetric Rank-2K update
(SYR2K), and Triangular Matrix-Matrix multiply (TRMM). We consider that this ap-
proach is effective to develop highly efficient BLAS3 routines especially on many-core
processors like GPUs.

Another contribution of this work is that we use the developed auto-tuning system
to tune copying kernels as well as GEMM kernel. Copying kernels are also an impor-
tant component in our implementation. Particularly for small problem sizes, the time
spending on the data copying is a performance bottleneck in our BLAS3 implemen-
tation. We show that the auto-tuning makes it possible to develop high-performance
copying kernels.

In this work, our BLAS3 is implemented in OpenCL. OpenCL is a standard frame-
work for parallel programming [8, 1]. Programs written in OpenCL are functionally
portable across various processors that include CPUs, GPUs, and other computing de-
vices such as Intel Xeon Phi co-processor and FPGA. This paper presents results of
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performance evaluation on the following different processing units:

1. AMD Radeon R9 290X (Volcanic Islands);

2. AMD FirePro W9100 (Volcanic Islands);

3. AMD Radeon HD 7970 (Southern Islands);

4. NVIDIA GeForce GTX Titan (Kepler);

5. Intel Xeon Phi 5110P (MIC);

6. Intel Core i7 3960X (Sandy Bridge).

The rest of this paper is organized as follows: Section 2 presents the basic infor-
mation on OpenCL. Section 3 describes our approach for high-performance BLAS3
implementation. Section 4 shows the performance evaluation of the BLAS3 imple-
mentation and provides comparison with the existing vendor provided BLAS libraries.
Finally, Section 6 gives the concluding remarks of this study.

2 OpenCL Basics

OpenCL (Open Computing Language) is an open standard for general purpose parallel
programming on heterogeneous computing platforms. The OpenCL framework includes
a C99-based programming language for writing parallel functions called kernels, and
runtime APIs for controlling OpenCL platforms and devices.

An OpenCL platform consists of one or more OpenCL devices. An OpenCL device
comprises multiple compute units (CUs), each of which has multiple processing elements
(PEs). When an OpenCL kernel is executed on the device, an N-dimensional index
space, which is called NDRange, is defined. In this work, we consider a two-dimensional
index space only, which is suitable for dealing with matrix data. Each instance in an
NDRange, is called a work-item. Every work-item has a unique ID. Several work-items
organize a work-group. A work-item runs on one or more PEs. A task on a work-group
is processed by all the PEs of a CU.

In an OpenCL kernel, four distinct memory regions are accessible to work-items.

1. Global memory (gm) is a memory region in which data can be read/written by all
work-items. It is impossible to synchronize work-items during kernel execution in
this memory.

2. Constant memory (cm) is a read-only region of global memory. Data in this
region are not changed during execution.

3. Local memory (lm) is a specific memory region to a work-group. Work-items in
a work-group can share data in local memory.
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4. Private memory (pm) is a specific memory region to a work-item. Data in private
memory of a work-item is not visible to other work-items. On most OpenCL
devices, private memory is in the register file.

3 Implementation

We use a common strategy in our implementation of different matrix-matrix multiply
routines. The strategy is to copy matrix data into a storage layout such that a high-
performance GEMM kernel can be utilized for computation.

3.1 GEMM

Let us review the GEMM implementation presented in our previous paper [11]. We
focus on the matrix multiply-add C ← C+AB operation. The current implementation
supposes column-major as the initial matrix storage order for consistency with BLAS
standard1.

Our GEMM routine is implemented with a GEMM (ABT + C) kernel and a data
copying kernel in OpenCL. The copying kernel is not simply replicating matrix data into
additionally allocated memory space (buffer). For computing AB +C, transposing the
matrix B is necessary to utilize the auto-tuned ABT + C kernel. Moreover, the tuned
GEMM kernel assumes that matrix data are aligned in a block-major order for high
performance, and zeros are padded if a matrix dimension is not in multiples of blocking
factor. In summary, the copying kernel conducts matrix transposition, storage layout
changing and zero padding if necessary. For simplicity, the following descriptions assume
cases where matrices are square, all matrix dimensions are multiples of any blocking
factors, and matrix data are aligned in column-major order if not specified.

The copying kernel as well as GEMM kernel uses two levels of blocking for efficiently
utilizing caches of processing units. In this paper, we describe values on the first level
of blocking for work-item processing as Mwi, Nwi, Kwi and values on the other level of
blocking for work-group processing as Mwg, Nwg, Kwg. Fig. 1 delineates a kernel which
copies matrix A data in column-major to a buffer in a form of column-block column-
major (CBC) order for our GEMM routine. The matrix-matrix multiply operation part
is generally represented as GEMM BODY in Fig. 2. After copying matrices A and B to
buffer, our GEMM routine calls the GEMM kernel (see Fig. 3).

3.2 SYMM

For SYMM routine, we focus on C ← AB+C, where A is a symmetric matrix and only
the lower triangular part stores the matrix data. The difference between GEMM and
SYMM is only in an operation on the matrix A: our SYMM routine are implemented by
only changing an OpenCL kernel which copies the matrix A from the GEMM routine.

1In our previous work, the GEMM OpenCL kernel fundamentally supposes row-major order.
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Figure 1: Copying matrix data from column-major order into a column-block column-
major order with blocking factors Mwg, Kwg,Mwi, Kwi

GEMM BODY(A,B, Start, End)

1: Cpm := 0
2: for p = Start to End−Kwi step Kwi do
3: Load Mwi ·Kwi elements of A from global memory into private memory (Apm)
4: Load Kwi ·Nwi elements of B from global memory into private memory (Bpm)
5: Cpm+ = Apm ×Bpm

6: end for
7: Return Cpm

Figure 2: Body of GEMM kernel

GEMM KERNEL(m,n, k, A,B,C)

1: Cpm := GEMM BODY(A,B, 0, k)
2: // Accumulating the product Cpm to the corresponding Mwi · Nwi data in global

memory (Cgm)
3: Cgm := Cpm + Cgm

Figure 3: GEMM kernel algorithm

The newly prepared kernel copies data of A into a buffer A′ in a form of symmetric
matrix. This means that the lower triangular and the diagonal parts of A′ is filled with
the lower triangular matrix A straightforwardly and the upper triangular part of A′ is
filled with transposed data of the lower triangular matrix A:

a′(i, p) =

{
a(i, p) if i ≥ p;
a(p, i) if i < p,
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where a(i, p) and a′(i, p) represents the element of A and A′ in (i, p) position, respec-
tively. Since we can treat SYMM as GEMM after the copying, the SYMM routine
simply calls the GEMM KERNEL.

3.3 SYRK

For SYRK routine, we select C ← C + AAT , where only the lower triangular part of
C is stored and updated. Because of the lower triangular property, we are required to
prepare a different matrix multiplication kernel for SYRK based on the GEMM kernel.
Fig. 4 gives the SYRK kernel algorithm. The auto-tuned GEMM kernel (GEMM BODY
in Fig. 2) is called inside the SYRK algorithm.

The newly prepared SYRK kernel only updates the lower triangular part. To re-
alize the operation, an work-group containing global work-item ID (y, x) updates the
responsible Mwg · Nwg elements of a block if the block is in lower triangular part of
C, otherwise, it returns immediately. All the work-items of a work-group assigned for
updating a diagonal block are responsible to compute the block in a parallel fashion
redundantly to avoid conditional statements which yield large latencies.

SYRK KERNEL(n, k, A,B,C)

1: Get a two-dimensional global ID (y, x)
2: if y · (Mwi/Mwg + 1) ·Mwi < x ·Nwi/Nwg then
3: Return // Assigned block for (y, x) is not in the lower triangular part
4: end if
5: Cpm := GEMM BODY(A,B, 0, k)
6: Merge Cpm with Mwi ·Nwi elements only of the lower triangular part of C

Figure 4: SYRK (C := C + AAT ) kernel algorithm

3.4 SYR2K

For SYR2K routine, we focus on C := C+ABT +BAT , where only the lower triangular
part of C is stored and updated. Our SYR2K implementation simply calls the above
SYRK routine twice, i.e., C := C+ABT and C := C+BAT computations are conducted
in a consecutive order.

3.5 TRMM

For TRMM routine, we focus on B := AB, where A is a upper triangular matrix. Like
the SYRK case, our TRMM OpenCL kernel is a slightly different from the GEMM
kernel. Since a multiplication of the upper triangular part of A and the general matrix
B is necessary, the TRMM kernel shifts the starting indexes of the multiplication in
a work-group in units of the work-group blocking factor Kwg. Fig. 5 schematically
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Figure 5: TRMM (B := AB) scheme

illustrates our TRMM implementation. The following statement shows the operations:

BIJ :=
K−1∑
P=I

AIPBPJ (0 ≤ I, J ≤ m/Mwg − 1 and K = m/Kwg).

In addition to the TRMM kernel, we have prepared a copying kernel to make the
TRMM computation possible. Like in the SYMM case, the prepared kernel copies data
of A into a buffer A′. This indicates that data elements of the upper triangular and
diagonal parts of A′ are filled with the corresponding data of A, and all elements of the
lower triangular part of A′ are initialized with zero:

a′(i, p) =

{
a(i, p) if i ≤ p;
0 if i > p.

3.6 Performance Tuning of Copying Kernels

As mentioned above, several copying kernels are required in addition to the matrix-
matrix multiplication kernels. The amount of matrix data copying is O(n2) for general
square (n×n) matrices while the amount of the computations (multiply-adds) is O(n3)
in case m = n = k. The larger the matrix size is, the copying time becomes less critical
in the total computation time. Nevertheless, we try to tune copying kernels as well to
avoid using these kernels whose performance is low.

Among BLAS3 routines implemented in this work, GEMM, SYMM, and TRMM
routines require respectively different copying kernels. We have newly implemented
code generators which produce copying kernels for the auto-tuning. Each code generator
takes a set of six parameters which are two work-group blocking factors Mwg, Nwg, two
work-item blocking factors Mwi, Nwi, and two loop unrolling degrees Mud, Nud. Fig. 6
represents a sample code algorithm of copying kernel (for GEMM without any data
converting operations like matrix transposition). Note that the work-group blocking
factors do not appear in the code; these appear in a routine interface code. We utilize
the developed auto-tuning system for tuning the copying kernels in the same manner
as for the GEMM kernel.
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COPY KERNEL(m, k,Asrc, Adst)

1: Get a two-dimensional global ID (y, x)
2: #pragma unroll (Mud)
3: for i = y to y +Mwi − 1 do
4: #pragma unroll (Nud)
5: for j = x to x+Nwi − 1 do
6: Adst(i, j) := Asrc(i, j)
7: end for
8: end for

Figure 6: Sample algorithm of copying kernel

An advantage of the present approach is that the necessary time for tuning copying
kernels are much smaller than the necessary time for GEMM kernel. A search space
for each copying kernel is very small compared to a search space for the GEMM kernel.
The number of tunable parameters on a copying kernel is six; hence, to find a near-
optimal parameter setting, we are required to measure the performance of hundreds
of kernels only. On the GEMM kernel, the number of tunable parameters is about 20
and we are required to test tens of thousands of kernels, which takes us much time
for the auto-tuning. A disadvantage of the approach is that every routine requires
additional memory space as destination buffers of data copying. In case of a BLAS3
computation on square (n × n) matrices, additional memory space for temporarily
storing two matrices (2n2 data elements) is needed.

4 Experimental Results

We evaluate our implementation of BLAS3 routines on four different GPUs (AMD
Radeon R9 290X, FirePro W9100, HD 7970, and NVIDIA GeForce GTX Titan), a
many-core co-processor (Intel Xeon Phi 5110P), and a multi-core processor (Intel Xeon
Core i7 3960X). Specifications of the processors are shown in Table 1. This paper
describes the performance of each BLAS3 routine, and does not take into account data
communication time between the host and OpenCL device. Notable characteristics of
each device are as follows:

• The AMD Radeon R9 290X is one of the AMD Volcanic Islands series that adopts
the Graphic Core Next (GCN) architecture. The GCN is a RISC (Reduced In-
struction Set Computer) SIMD (Single-Instruction Multiple-Data) architecture.
The R9 290X contains 44 compute units (CUs). All CUs share a 1 MB L2 cache.
Each CU has four vector units, a scalar unit, a 16 KB read/write L1 cache, and
a 64 KB local data share (32 KB is available to a single wavefront). Each vec-
tor unit consists of 16 processing elements (PEs); thus, the R9 290X is equipped
with 2816 (= 44 · 4 · 16) PEs. The performance in double-precision is limited to
one-eighth that in single precision.

9



• The AMD FirePro W9100 is one of the AMD Volcanic Islands series for usage on
workstations. The W9100 and R9 290X have the same GPU codename (“Hawaii”)
and characteristics of W9100 are mostly same as R9 290X. An important difference
between the two GPUs is that the performance in double precision is half that in
single precision (no limitation).

• The AMD Radeon HD 7970 is one of the AMD Southern Islands series that also
adopts the GCN architecture. The HD 7970 contains 32 compute units (CUs).
All CUs share a 768 KB L2 cache. Each CU has four vector units, a scalar unit,
a 16 KB read/write L1 cache, and a 64 KB local data share (32 KB is available
to a single wavefront). Each vector unit consists of 16 processing elements (PEs);
thus, the HD 7970 is equipped with 2048 (= 32 · 4 · 16) PEs.

• The GeForce GTX Titan is a NVIDIA Kepler GF110 GPU. The GTX Titan
contains 14 Streaming Multiprocessor eXtremes (SMXs). All SMXs share a 1.5
MB L2 cache. Each SMX has a 64 KB L1 cache, a 64 KB shared memory, 192
CUDA cores; thus, the GTX Titan is equipped with 2688 (= 14cdot192). The
performance in double precision is one-third of the single precision.

• The Xeon Phi 5110P is one of the Intel’s first commercial products in MIC (Many
Integrated Core) architecture. The Xeon Phi features 60 in-order cores (59 cores
available for computation) connected by a high-performance bidirectional ring
interconnect. Each core supports four-way hyper-threading to hide memory and
instruction latencies. The computation unit of the core is a vector unit which
has a 512-bit wide register file (32 registers per thread) and can execute 8-way
double-precision or 16-way single-precision floating-point SIMD instructions in a
single clock. Additionally, each core has a 32 KB L1 data cache, a 32 KB L1
instruction cache, and a 512 KB L2 cache.

• The Core i7 3960X is a six-core CPU of Intel’s Sandy Bridge architecture. The
CPU has 15 MB L3 cache. The processing core has a 32 KB L1 cache and 256
KB L2 cache. Also, the core has a 256-bit wide register file and can execute four-
way double-precision or eight-way single-precision floating-point SIMD (AVX)
instructions in a single clock.
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4.1 Performance on Radeon R9 290X

This section presents performance measurement results on the Radeon R9 290X GPU.
We compare our implementation with clMathLibraries clBLAS 2.2.0. The clBLAS
is an open-source BLAS library in OpenCL and is being developed mainly by AMD
employees. In the clBLAS, a program for tuning BLAS routines is provided, and the
performance results of clBLAS are measured after applying the tuning program.

Fig. 7 shows the performance of SSYMM routine. Our implementation demon-
strates higher performance for most of matrix sizes than clBLAS, and the performance
is 2.8 times higher on average. Relative performances of BLAS3 implementation to
clBLAS are shown in Fig. 8 (higher is better). The STRMM and SGEMM routines
achieves better performance for large matrix sizes. We do not see a large difference in
performances of the SSYRK and SSYR2K routines.
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Figure 7: SSYMM performance on Radeon R9 290X

Fig. 9 shows a measured bandwidth of copying kernel for the SSYMM routine, and it
compares the bandwidth of auto-tuned copying kernel with that of non-tuned copying
kernel2. The auto-tuning enables to develop a copying kernel whose performance is
much higher than the non-tuned kernel. The bandwidth of tuned kernel is up to 110
GB/s while the bandwidth of non-tuned kernel is up to 2 GB/s. To show another
evidence why tuning of a copying kernel is necessary, we present the ratio of copying
time to total computation time for the SSYMM routine in Fig. 10. When we do not
tune the copying kernel, the copying time dominates over 65% of total computation
time even for matrix sizes of around 8000. By the auto-tuning, the ratio decreases
to less than 5% for these sizes. The auto-tuning of the copying kernel contributes to
develop high-performance routines.

2All parameters (Mwg, Nwg,Mwi, Nwi,Mud, Nud) of the non-tuned copying kernel are set as 1.
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Our SSYMM routine demonstrates a similar performance to our DGEMM routine
since we use the identical GEMM kernel usage in both routines. However, the other
three routines (SSYRK, SSYR2K, and STRMM) requires small modifications in GEMM
kernel usage to implement as described in Section 3.3-3.5. Fig. 11 depicts the relative
performance of each BLAS3 routine to the performance of the SGEMM routine. The
performance of the three routines is lower than that of SSYMM. The SSYRK and
SSYR2K routines demonstrate an almost identical performance since the two routines
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share utilized OpenCL kernels. The performance of STRMM routine is the lowest
among all our BLAS3 routines on the GPU.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1024  2048  3072  4096  5120  6144  7168  8192

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Matrix size [m=n=k]

SSYMM
SSYR2K

SSYRK
STRMM
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4.2 Performance on Different Processing Units

This section presents experimental results on different processing units (see Table 1).
Table 2 describes the maximum measured performance of our implementation as well
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as a vendor BLAS library on the processing units. The R9 290X and W9100 show a
little different performance’s behaviour though the GPU architecture is same (Volcanic
Islands). The STRMM routine works more efficiently than SSYRK and SSYR2K on
the W9100 while it is opposite on the R9 290X. Among the present devices, W9100 is
the fastest for the double-precision routines while R9 290X is the fastest for the single-
precision routines. For the GTX Titan, our implementation in OpenCL works slower
than cuBLAS. We suppose that the OpenCL runtime in CUDA toolkit is less tuned
than the CUDA runtime. Our implementation on the Xeon Phi and Core i7 is worse
than MKL. MKL is highly tuned in an assembly language level, and this result shows
another evidence that it is hard to outperform the program written in assembly level
using a high-level language.

Table 2: Maximum performance in GFlop/s on different OpenCL devices
Device R9 290X W9100 HD 7970 GTX Titan Xeon Phi Core i7
Impl. Ours #1 Ours #1 Ours #1 Ours #2 Ours #3 Ours #3

SGEMM 4650 3617 4223 3341 2913 2472 2300 3374 545 1701 97 277
SSYMM 4584 2013 4113 1698 2871 1047 2292 2620 544 1188 97 273
SSYRK 3853 3619 2295 3325 2096 2448 2183 3248 91 768 95 256
SSYR2K 3822 3623 2223 3307 2774 2448 2211 3164 89 205 95 254
STRMM 3623 2649 3157 2463 2758 1779 2226 2908 13 510 91 262
DGEMM 670 654 1778 1019 823 662 958 1349 269 841 60 136
DSYMM 665 488 1708 584 818 407 955 1229 266 649 59 131
DSYRK 657 664 1138 1008 734 739 929 1332 34 646 55 125
DSYR2K 655 665 1096 991 796 740 910 1307 32 277 55 117
DTRMM 643 576 1576 732 789 538 820 1189 10 281 54 128
#1: clBLAS (clMathLibraries clBLAS) 2.2.0
#2: cuBLAS (CUDA BLAS in CUDA) 5.5 Toolkit
#3: MKL (Math Kernel Library) 11.0 update 1

5 Related Work

Igual et al. [6, 5] designed and evaluated a high-performance implementation of dif-
ferent Level-3 BLAS routines. Their implementation takes advantage of existing the
NVIDIA cuBLAS library and attains huge speedups over the cuBLAS. The cuBLAS
at that time does not show an equal performance for all Level-3 BLAS routines (the
GEMM routine runs much more efficiently than the other routines). For their BLAS3
implementation, they presented matrix-panel (MP), panel-matrix (PM), panel-panel
(PP) product based variants, where both matrix dimensions is large in the “matrix”
and one of the dimensions is small in the “panel”. In this point of view, our approach,
presented in this paper, is considered to be a matrix-matrix (MM) product variant.
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As for SYRK routine implementation on a GPU, Nath et al.[14] have used a thread-
block reordering technique to limit the computation only to data blocks that are on the
diagonal or in the in the lower/upper triangular part of the matrix. All the threads
in diagonal blocks compute half of the block in a parallel fashion redundantly to avoid
conditional statements that have been required otherwise. Their SYRK implementation
showed higher performance than cuBLAS at that time [13]. Our approach for SYRK
routine also limits the computation in the lower triangular part and implements the
redundant computation for the diagonal blocks.

6 Conclusion

In this paper, we have presented the implementation of different Level-3 BLAS (BLAS3)
routines in OpenCL. A key in the implementation is to utilize data copying kernels to
realize each BLAS3 routine. In the present work, the copying kernels as well as GEMM
kernel are highly tuned by an auto-tuning technique. We have parameterized each
copying kernel and implemented code generators which produce copying kernels for
the auto-tuning. Experimental results show that tuning the copying kernels greatly
contributes to developing of high-performance BLAS3 routines.

The proposed approach utilizes a highly-tuned GEMM kernel for other existing
BLAS3 routines. We found that the performance of the SYMM routine is almost
equivalent to that of GEMM routine while the performance of the SYRK, SYR2K, and
TRMM routines is a little lower than that of GEMM. A future work is to investigate
the reason of such low performance for a better BLAS implementation.
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