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The ability to compute a property on structures in polynomial time depends on the structures 

and the property we are going to compute. We analyze such dependences and demonstrate a 

basis for the existence of algorithms of non-polynomial time leading to the separation of P and 

NP. This is based on considering NP problems as one type of “boundary value” problems where 

specification of “boundary values” is skipped. We present an example of such a problem and its 

“boundary values” and discuss some issues related to making theoretical models more practical. 

 

1. Preliminary consideration  

Most computer scientists and mathematicians believe that      [1-2]. This 
paper is to justify this believe.  

Let us consider as a structure of our interest the interval of {0, 
 

 
   where for any   

in this interval the following equation with the unknown (but twice differentiable) 
function      is valid:        

             .                                              (1) 
 

In fact, we can consider N points within this interval (with     ). The property 
to be discovered is behind the question: is there a point    where  
 

                                                                 (2) 
 

For simplicity, we can define some level of accuracy to recognize the equality of 
(2). The general solution to the equation (1) is 
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where     d   are arbitrary constants. The structure definition does not provide 
any basis to determine     d  . Based on (2), the question related to the 
property can be rewritten in the following form: is there a point    where 
 

                                       ⁄                      .                                      (3) 

 
To answer this question, we have to perform some search on possible values of 
constants   and  . Though for the one dimensional structure this search can still 
be of polynomial complexity, nevertheless, the example considered is a good 
illustration of possible necessity  

- for “additional determining the boundary conditions” which cannot be 
find in the structure and property definitions, or  

- for replacing such conditions by some exhausting search.  
 
“Additional boundary conditions” mean not only some possible values on 
structure boundary points, but also some externally defined relations and 
equations.  
 
Now, let us consider another structure which is our interval (one dimensional 
structure) that is closured into a cycle. In this case,          ⁄  , constant 

    and  (3) is transformed into     ⁄                   that does not 

require “additional boundary conditions” or corresponding search to answer the 
question (2).  
 
These simple examples are just to demonstrate that on one dimensional structure, 
where local features in points are defined by an ordinary differential equation, 
there are two types of algorithms to compute a property on such structure: with 
or without “additional boundary conditions depending on  the involvement of 
arbitrary constants.”   
 

However, if we consider two dimensional structures (for example, a  
 

 
  

 

 
 

square) and a partial differential equation (for example, Laplace's equation) for 
defining local features in points, the algorithms to compute a property can 
depend on the involvement of arbitrary functions and on a fact that the 
superposition of any two solutions is also a solution. As a result, such algorithms 
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can be of non-polynomial time. It is important to note once more that “boundary 
conditions values related to the arbitrary functions” cannot be just extracted from 
definitions of the structure and the property. To be obtained, they need an 
additional search of possible values. This effect is behind     . 
 
 
2. Underdetermined problems 
 
Problems which require “boundary conditions” of the above mentioned type are 
examples of underdetermined problems. There are other forms of them. For 
example, a system of linear equations is considered underdetermined if there are 
fewer equations than unknowns. In fact, the number of equations can be equal to 
number of unknowns, but the maximum number of independent rows (or, the 
maximum number of independent columns) can be fewer.  
 
The existence of determined and underdetermined problems is a fundamental 
basis of the existence of P and NP algorithms. For the P algorithms, which are 
related to determined problems, there is no necessity to obtain “boundary 
condition values.” For the NP algorithms, which are related to underdetermined 
problems, there is no a basis for solution without such values. These differences 
separate P and NP. Within the framework of this view, let us consider one more 
example where a graph is used to represent a structure and a system of linear 
algebraic equations is used to represent a property which should be discovered 
on this structure.  
 
Let we have a simple graph G = G(V,E) where V is a set of vertices and E is a set of 
edges. It is assumed that the graph is undirected one with unweighted edges. It is 
also assumed that the number of vertices is N and the number of edges is M. To 
simplify the explanation of our approach, we will use an example of graph G (with 
M=10 and N=6) depicted by Figures 1-3. 
 
To represent the property of goal computing, a system of N equations (one 
equation for each vertex) is defined. Each equation is based on the graph 
definition and on a necessary condition for the Hamiltonicity,  requiring two 
incident edges of a vertex to be involved into a Hamilton cycle. 
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  Fig.1. Graph G with M=10, N=6        Fig.2. Adjacency matrix of G         Fig.3. Edge labeling  

 

For graph G specified by Figures 1-3,  the system of such equations looks as 
follows:  
 
                E1 + E2 + E3                                                     – 2H = F   

                E1                      + E4 + E5                                       – 2H = F  

                       E2                                 + E6 + E7                         – 2H = F                                       (4) 

                               E3 + E4      + E6        + E8 + E9              – 2H = 3F  

                                             E5                     + E8         + E10 – 2H = F  

                                                           E7           + E9 + E10 – 2H = F 

where Ei       F} (i=1,…,10) is a variable representing edge i; its value can be only 

H or F which are symbolic parameters (Ei is equal to H if it is involved in a Hamilton 

cycle and F if not).  

Based on system (4), the property to be computed is defined as follows:  

Find a solution of (4) such that a sub-graph of G including only H-edges is 

connected.  

In fact, it is easy to see that the existence of such solution is necessary and 

sufficient conditions for the graph Hamiltonicity: 

- Let a solution exist, then N variables are equal to H, M-N variables are 

equal to F and the set of H-edges represents a Hamilton cycle; this we 

can see after summation of all equations of (4): ∑   
 
  – NH = (M-N)F 
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and after taking into account  that a sub-graph of G including only H-

edges is connected.  

- Let a set of edges representing a Hamilton cycle exist, then the system 

of equations (4) has a solution with Ei       F}; this we can see after 

assigning value H to all edges from the set and value F to all other 

edges and after checking that all equations are valid with such 

assigning. Assuming that some equations are not valid leads to 

contradictions with the graph definition (with subsets of edges incident 

to each vertex) and/or with the existence of only two H-edges among 

each of these subsets.   

Of course, the problem is how to find a solution. A standard linear solver (based 

on an elimination method of a cubic polynomial complexity) gives us the following 

expressions: 

E1 = r1,                   E2 = -F+ r4+ r3+ r2- r1,         E3 = 2H+2F- r4- r3- r2,              

E4 = r4+ r2- r1,         E5 = 2H+F- r4- r2,               E6 = F- r4+ r1,                    (5)                  

E7 = 2H+F- r3- r2,    E8 = r4,                              E9 = r3 ,        E10 = r2. 

These expressions provide a general solution depending on M-N arbitrary 

parameters ri (in our example, 4 parameters) representing “boundary condition 

values.” The graph and property definitions do not provide a basis for 

determining ri. An additional search has to be done. We are interested in     F} 

values, so the worst case scenario (which does not expect any specific features of 

the graph) for the corresponding search requires         operations (of a 

polynomial type each). However, if we have a solution, it can be easily (in 

polynomial time) verified.  

Within the framework of defining features of locality, there is an essential analogy 

between the (4) type equations and the (1) type equations.  The graph as a set of 

vertices and a set of edges can be considered as a structure within a limited two 

dimensional area (for example, the  
 

 
  

 

 
 square) where distances (possibly not 

all) between vertices are decreased while the number of vertices is increased. As 
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a result, local features in vertices defined by sets of incident edges look like local 

features in points defined by differential equations. Therefore, computing some 

properties of the graph can lead us to the necessity of “boundary conditions.” 

Of course, for graphs with specific features, for example, with       g   

(   ), the search will be of      operations (of a polynomial type) and the 

total complexity of the problem will also be of a polynomial level.  

On the other hand, in spite of the exponential complexity of the worst case 

scenario, the (5) type expressions are a good basis for efficient heuristic search 

schemes where  

- frequency of each parameter involvement in the expressions can be used as 

a priority for making decisions on the parameter values and  

- symbolic analysis of the updated expression consistency after such 

decisions, as well as appearance of one edge vertices and connectedness of 

the graph, where edges equal to F are removed, can be applied as a special 

pruning technique.  

The consistency mentioned requires that for each step of decision making, in all 

expressions involved,  ∑    , where    is a coefficient at parameter   that can 

be          . For example, for    in (5), ∑              . In addition, 

the value of any    should be H or F. Assume, that at the first step a decision to 

assign H to   and    is made. Then all expressions including   and    are also 

updated. Before making decision at a second step, all updated expressions are 

checked for the consistency and the graph without edges equal to F is checked for 

connectedness and appearance of one edge vertices. In this case, the updating 

operations transforms expressions of (5) into a form allowing additional symbolic 

analysis: 

E1 = r1,               E2 = -F+ 2H+ r3- r1,         E3 = 2F- r3            

E4 = 2H- r1,         E5 = F,                            E6 = F,                                                        

E7 = H+F- r3,      E8 = H,                            E9 = r3 ,        E10 = H. 
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From the expression for E3 we automatically obtain value F for r3 and E3, and from 

the expression for E4 we automatically obtain value H for r1 and E4. After that all 

other Ei obtain their values, too. 

3. Bridging gap between theory and practice 

Specifying “boundary conditions” and, in this way, transforming, at least partially, 
underdetermined problems into determined ones are a way to make theoretical 
models be more practical (calls for such necessity, in spite of success of some 
practical approaches, are rather strong; see, for example, [3]). On the other hand, 
practice can help in discovering forms for such specifying and transforming. For 
example, to solve the Hamiltonicity problem on German (or European) networks 
of roads, which were created for centenaries, some history of the road 
construction can be extracted to divide the set of edges into subsets with special 
features allowing the introduction of systems of algebraic equations (with 
reasonable level of the determinant rank). Similar ideas can be used for designing 
devices/circuits where sets of connections can be technologically divided into 
subsets to help in various optimizations. Finally, the introduction of the edge 
hierarchy can also be used as a very practical technique for solving large-scale 
problems.  
 
These simple observations provide good hints, for example, for enhancing the 
graph definition. This enhancing can be done by considering graph as a set of 
vertices and a set of edges that is a union of subsets representing a “history” or 
“hierarchy” of the edge appearance. 
  
As an example, let us consider an idea of hierarchical edges which on the first level 
define connections between non-intersected regions, on the second level  - 
between non-intersected sub-regions inside the regions, and so on: 
 

  {∪    }     …  𝐼;     …  𝐽   ; 

         
whe e 𝐼 is the  umbe   f the hie   chic    eve s   d 𝐽    is the  umbe   f  egi  s 
on level  . We can also assume that the number of sub-regions in a region is 
limited by constant   (if      we have  𝐽   ≤   𝐽       and that there is a 
rule (including a full freedom) of assigning vertices in a sub-region for hosting 
edges representing connections of this sub-region with other sub-regions of the 
same hierarchical level.  
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Within such definition, we implicitly defined some “boundary condition values” to 
solve Hamiltonicity problem in polynomial time. Considering regions and sub-
regions as super-vertices, at each step of algorithm we can work with graphs 
where a property we need can be easily find. This is because of small size graphs 
allowing exhausting search and because of appropriate freedom for assigning 
edges of inter-regional connections. In fact, to find a Hamilton cycle, we can find it 
between regions after that inside each region with necessary adjustments 
between hierarchical levels. Within a region we need only a Hamilton path 
covering sub-regions. In a case of applying a system of the (4) type, corresponding 
equations can be written not only for vertices, but also for regions and sub-
regions. As a result, the number of arbitrary parameters to be considered is 
drastically decreased or disappeared at all.  
 
4. Conclusion 
 
NP problems are underdetermined problems where some arbitrary constants/ 
functions or relations are implicitly involved. In general cases such constants/ 
functions or relations cannot be extracted in a complete form from definitions of 
the structure and the computing property. And thus, they have to be exhaustively 
searched. In other words, external “boundary condition values” cannot be easily 
reconstructed through the definition of the structure and internal properties. NP 
problems can be considered as “ill-posed problems” requiring some 
“regularization” in a form of “boundary conditions.” That is why the NP class 
cannot   be equal to the P class. Redefining models by introduction of “boundary 
conditions” is a way to solve serious practical problems. 
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